codelion commited on
Commit
7b99e28
·
verified ·
1 Parent(s): b84dd14

Update loaders/common.py

Browse files
Files changed (1) hide show
  1. loaders/common.py +63 -48
loaders/common.py CHANGED
@@ -10,8 +10,6 @@ from stats import add_usage
10
  def process_file(vector_store, file, loader_class, file_suffix, stats_db=None):
11
  try:
12
  print("=== Starting file processing ===")
13
- print(f"Initial file details - Name: {file.name}, Size: {file.size}")
14
-
15
  documents = []
16
  file_name = file.name
17
  file_size = file.size
@@ -22,45 +20,42 @@ def process_file(vector_store, file, loader_class, file_suffix, stats_db=None):
22
 
23
  dateshort = time.strftime("%Y%m%d")
24
 
25
- # Debug loading
26
- print("=== Document Loading ===")
27
  with tempfile.NamedTemporaryFile(delete=False, suffix=file_suffix) as tmp_file:
28
  tmp_file.write(file.getvalue())
29
  tmp_file.flush()
30
- print(f"Temporary file created: {tmp_file.name}")
31
-
32
  loader = loader_class(tmp_file.name)
33
  documents = loader.load()
34
- print(f"Number of documents after loading: {len(documents)}")
35
- print("First document content preview:")
36
- if documents:
37
- print(documents[0].page_content[:200])
38
-
39
  file_sha1 = compute_sha1_from_file(tmp_file.name)
40
  os.remove(tmp_file.name)
41
 
42
- # Debug splitting
43
- print("\n=== Document Splitting ===")
44
  chunk_size = st.session_state['chunk_size']
45
  chunk_overlap = st.session_state['chunk_overlap']
46
- print(f"Splitting with chunk_size: {chunk_size}, overlap: {chunk_overlap}")
47
-
48
  text_splitter = RecursiveCharacterTextSplitter.from_tiktoken_encoder(chunk_size=chunk_size, chunk_overlap=chunk_overlap)
 
49
  documents = text_splitter.split_documents(documents)
50
- print(f"Number of documents after splitting: {len(documents)}")
51
 
52
- # Debug metadata creation
53
- print("\n=== Creating Documents with Metadata ===")
54
  docs_with_metadata = []
55
  for i, doc in enumerate(documents):
56
- if isinstance(doc.page_content, str):
57
- if "error" in doc.page_content.lower():
58
- print(f"WARNING: Found potential error message in document {i}:")
59
- print(doc.page_content[:200])
60
- continue # Skip this document
61
 
 
 
 
 
 
 
 
 
 
 
62
  new_doc = Document(
63
- page_content=doc.page_content,
64
  metadata={
65
  "file_sha1": file_sha1,
66
  "file_size": file_size,
@@ -72,34 +67,54 @@ def process_file(vector_store, file, loader_class, file_suffix, stats_db=None):
72
  }
73
  )
74
  docs_with_metadata.append(new_doc)
75
- else:
76
- print(f"WARNING: Document {i} has non-string content type: {type(doc.page_content)}")
77
- print(f"Content: {str(doc.page_content)[:200]}")
78
 
79
- print(f"Final number of documents to be added: {len(docs_with_metadata)}")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
80
 
81
- # Vector store addition
82
- try:
83
- vector_store.add_documents(docs_with_metadata)
84
- if stats_db:
85
- add_usage(stats_db, "embedding", "file", metadata={
86
- "file_name": file_name,
87
- "file_type": file_suffix,
88
- "chunk_size": chunk_size,
89
- "chunk_overlap": chunk_overlap
90
- })
91
- except Exception as e:
92
- print(f"\n=== Vector Store Addition Error ===")
93
- print(f"Exception: {str(e)}")
94
- print(f"Input details:")
95
- print(f"File name: {file_name}")
96
- print(f"File size: {file_size}")
97
- print(f"File SHA1: {file_sha1}")
98
- print(f"Number of documents: {len(docs_with_metadata)}")
99
- print(f"Vector store type: {type(vector_store).__name__}")
100
- raise
101
 
102
  except Exception as e:
103
  print(f"\n=== General Processing Error ===")
104
  print(f"Exception occurred during file processing: {str(e)}")
 
105
  raise
 
10
  def process_file(vector_store, file, loader_class, file_suffix, stats_db=None):
11
  try:
12
  print("=== Starting file processing ===")
 
 
13
  documents = []
14
  file_name = file.name
15
  file_size = file.size
 
20
 
21
  dateshort = time.strftime("%Y%m%d")
22
 
23
+ # Load documents
 
24
  with tempfile.NamedTemporaryFile(delete=False, suffix=file_suffix) as tmp_file:
25
  tmp_file.write(file.getvalue())
26
  tmp_file.flush()
 
 
27
  loader = loader_class(tmp_file.name)
28
  documents = loader.load()
 
 
 
 
 
29
  file_sha1 = compute_sha1_from_file(tmp_file.name)
30
  os.remove(tmp_file.name)
31
 
 
 
32
  chunk_size = st.session_state['chunk_size']
33
  chunk_overlap = st.session_state['chunk_overlap']
 
 
34
  text_splitter = RecursiveCharacterTextSplitter.from_tiktoken_encoder(chunk_size=chunk_size, chunk_overlap=chunk_overlap)
35
+
36
  documents = text_splitter.split_documents(documents)
 
37
 
38
+ # Create documents with metadata and validate content
 
39
  docs_with_metadata = []
40
  for i, doc in enumerate(documents):
41
+ try:
42
+ # Validate content is string and not empty
43
+ if not isinstance(doc.page_content, str):
44
+ print(f"Skipping document {i}: Invalid content type {type(doc.page_content)}")
45
+ continue
46
 
47
+ if not doc.page_content.strip():
48
+ print(f"Skipping document {i}: Empty content")
49
+ continue
50
+
51
+ # Basic content validation
52
+ content = doc.page_content.strip()
53
+ if len(content) < 10: # Skip very short contents
54
+ print(f"Skipping document {i}: Content too short ({len(content)} chars)")
55
+ continue
56
+
57
  new_doc = Document(
58
+ page_content=content,
59
  metadata={
60
  "file_sha1": file_sha1,
61
  "file_size": file_size,
 
67
  }
68
  )
69
  docs_with_metadata.append(new_doc)
70
+ except Exception as e:
71
+ print(f"Error processing document {i}: {str(e)}")
72
+ continue
73
 
74
+ print(f"Processed {len(docs_with_metadata)} valid documents")
75
+
76
+ # Process in smaller batches
77
+ BATCH_SIZE = 50
78
+ for i in range(0, len(docs_with_metadata), BATCH_SIZE):
79
+ batch = docs_with_metadata[i:i + BATCH_SIZE]
80
+ try:
81
+ print(f"Processing batch {i//BATCH_SIZE + 1} of {(len(docs_with_metadata) + BATCH_SIZE - 1)//BATCH_SIZE}")
82
+ # Debug embedding process
83
+ texts = [doc.page_content for doc in batch]
84
+ metadatas = [doc.metadata for doc in batch]
85
+
86
+ print(f"Sample text from batch (first 200 chars): {texts[0][:200] if texts else 'No texts'}")
87
+
88
+ # Try to get embeddings directly first
89
+ try:
90
+ embeddings = vector_store._embedding.embed_documents(texts)
91
+ print(f"Successfully generated embeddings for batch. First embedding shape: {len(embeddings[0]) if embeddings else 'No embeddings'}")
92
+ except Exception as e:
93
+ print(f"Embedding error: {str(e)}")
94
+ print(f"Embedding type: {type(vector_store._embedding).__name__}")
95
+ # You might want to add retry logic here
96
+ raise
97
+
98
+ vector_store.add_documents(batch)
99
+ print(f"Successfully added batch to vector store")
100
+
101
+ except Exception as e:
102
+ print(f"Error processing batch {i//BATCH_SIZE + 1}: {str(e)}")
103
+ print(f"First document in failed batch (truncated):")
104
+ if batch:
105
+ print(batch[0].page_content[:200])
106
+ raise
107
 
108
+ if stats_db:
109
+ add_usage(stats_db, "embedding", "file", metadata={
110
+ "file_name": file_name,
111
+ "file_type": file_suffix,
112
+ "chunk_size": chunk_size,
113
+ "chunk_overlap": chunk_overlap
114
+ })
 
 
 
 
 
 
 
 
 
 
 
 
 
115
 
116
  except Exception as e:
117
  print(f"\n=== General Processing Error ===")
118
  print(f"Exception occurred during file processing: {str(e)}")
119
+ print(f"Exception type: {type(e).__name__}")
120
  raise