ReversibleHalftoning / train_warm.py
menghanxia's picture
created the space
6e70c4a
import os, glob, datetime, time
import argparse, json
import torch
import torch.optim as optim
from torch.autograd import Variable
import torchvision
from torch.utils.data import DataLoader
from torch.backends import cudnn
from model.base_module import tensor2array
from model.model import ResHalf
from model.loss import *
from utils.dataset import HalftoneVOC2012 as Dataset
from utils.util import ensure_dir, save_list, save_images_from_batch
class Trainer():
def __init__(self, config, resume):
self.config = config
self.name = config['name']
self.resume_path = resume
self.n_epochs = config['trainer']['epochs']
self.with_cuda = config['cuda'] and torch.cuda.is_available()
self.seed = config['seed']
self.start_epoch = 0
self.save_freq = config['trainer']['save_epochs']
self.checkpoint_dir = os.path.join(config['save_dir'], self.name)
ensure_dir(self.checkpoint_dir)
json.dump(config, open(os.path.join(self.checkpoint_dir, 'config.json'), 'w'),
indent=4, sort_keys=False)
print("@Workspace: %s *************"%self.checkpoint_dir)
self.cache = os.path.join(self.checkpoint_dir, 'train_cache')
self.val_halftone = os.path.join(self.cache, 'halftone')
self.val_restored = os.path.join(self.cache, 'restored')
ensure_dir(self.val_halftone)
ensure_dir(self.val_restored)
## model
self.model = eval(config['model'])(train=True, warm_stage=True)
if self.config['multi-gpus']:
self.model = torch.nn.DataParallel(self.model).cuda()
elif self.with_cuda:
self.model = self.model.cuda()
## optimizer
self.optimizer = getattr(optim, config['optimizer_type'])(self.model.parameters(), **config['optimizer'])
self.lr_sheduler = optim.lr_scheduler.ReduceLROnPlateau(self.optimizer, **config['lr_sheduler'])
## dataset loader
with open(os.path.join(config['data_dir'], config['data_loader']['dataset'])) as f:
dataset = json.load(f)
train_set = Dataset(dataset['train'])
self.train_data_loader = DataLoader(train_set, batch_size=config['data_loader']['batch_size'],
shuffle=config['data_loader']['shuffle'],
num_workers=config['data_loader']['num_workers'])
val_set = Dataset(dataset['val'])
self.valid_data_loader = DataLoader(val_set, batch_size=config['data_loader']['batch_size'],
shuffle=False,
num_workers=config['data_loader']['num_workers'])
# special dataloader: constant color images
with open(os.path.join(config['data_dir'], config['data_loader']['special_set'])) as f:
dataset = json.load(f)
specialSet = Dataset(dataset['train'])
self.specialDataloader = DataLoader(specialSet, batch_size=config['data_loader']['batch_size'],
shuffle=config['data_loader']['shuffle'],
num_workers=config['data_loader']['num_workers'])
## loss function
self.quantizeLoss = eval(config['quantizeLoss'])
self.quantizeLossWeight = config['quantizeLossWeight']
self.toneLoss = eval(config['toneLoss'])
self.toneLossWeight = config['toneLossWeight']
self.structureLoss = eval(config['structureLoss'])
self.structureLossWeight = config['structureLossWeight']
# quantize [-1,1] data to be {-1,1}
self.quantizer = lambda x: Quantize.apply(0.5 * (x + 1.)) * 2. - 1.
self.blueNoiseLossWeight = config['blueNoiseLossWeight']
self.featureLoss = FeatureLoss(
requireGrad=False, pretrainedPath='checkpoints/invhalftone_checkpt/model_best.pth.tar')
self.featureLossWeight = config['featureLossWeight']
# resume checkpoint
if self.resume_path:
assert os.path.exists(resume_path), 'Invalid checkpoint Path: %s' % resume_path
self.load_checkpoint(self.resume_path)
def _train(self):
torch.manual_seed(self.config['seed'])
torch.cuda.manual_seed(self.config['seed'])
cudnn.benchmark = True
start_time = time.time()
self.monitor_best = 999.
for epoch in range(self.start_epoch, self.n_epochs + 1):
ep_st = time.time()
epoch_loss = self._train_epoch(epoch)
# perform lr_sheduler
self.lr_sheduler.step(epoch_loss['total_loss'])
epoch_lr = self.optimizer.state_dict()['param_groups'][0]['lr']
epoch_metric = self._valid_epoch(epoch)
print("[*] --- epoch: %d/%d | loss: %4.4f | metric: %4.4f | time-consumed: %4.2f ---" % \
(epoch+1, self.n_epochs, epoch_loss['total_loss'], epoch_metric, (time.time()-ep_st)))
# save losses and learning rate
epoch_loss['metric'] = epoch_metric
epoch_loss['lr'] = epoch_lr
self.save_loss(epoch_loss, epoch)
if ((epoch+1) % self.save_freq == 0 or epoch == (self.n_epochs-1)):
print('---------- saving model ...')
self.save_checkpoint(epoch)
if self.monitor_best > epoch_metric:
self.monitor_best = epoch_metric
self.save_checkpoint(epoch, save_best=True)
print("Training finished! consumed %f sec" % (time.time() - start_time))
def _to_variable(self, data, target):
data, target = Variable(data), Variable(target)
if self.with_cuda:
data, target = data.cuda(), target.cuda()
return data, target
def _train_epoch(self, epoch):
self.model.train()
total_loss, quantize_loss, feature_loss = 0, 0, 0
tone_loss, structure_loss, blue_noise_loss = 0, 0, 0
specialIter = iter(self.specialDataloader)
time_stamp = time.time()
for batch_idx, (color, halftone) in enumerate(self.train_data_loader):
color, halftone = self._to_variable(color, halftone)
# special data
try:
specialColor, specialHalftone = next(specialIter)
except StopIteration:
# reinitialize data loader
specialIter = iter(self.specialDataloader)
specialColor, specialHalftone = next(specialIter)
specialColor, specialHalftone = self._to_variable(specialColor, specialHalftone)
self.optimizer.zero_grad()
output = self.model(color, halftone)
quantizeLoss = self.quantizeLoss(output[0])
toneLoss = self.toneLoss(output[0], color)
structureLoss = self.structureLoss(output[0], color)
featureLoss = self.featureLoss(output[0], bgr2gray(color))
# special data
output = self.model(specialColor, specialHalftone)
toneLossSpecial = self.toneLoss(output[0], specialColor)
blueNoiseLoss = l1_loss(output[1], output[2])
quantizeLossSpecial = self.quantizeLoss(output[0])
loss = (self.toneLossWeight * toneLoss + self.blueNoiseLossWeight*toneLossSpecial) \
+ self.quantizeLossWeight * (0.5*quantizeLoss + 0.5*quantizeLossSpecial) \
+ self.structureLossWeight * structureLoss \
+ self.blueNoiseLossWeight * blueNoiseLoss \
+ self.featureLossWeight * featureLoss
loss.backward()
# apply grad clip to make training roboust
# torch.nn.utils.clip_grad_norm_(self.model.parameters(), 0.0001)
self.optimizer.step()
total_loss += loss.item()
quantize_loss += quantizeLoss.item()
feature_loss += featureLoss.item()
tone_loss += toneLoss.item()
structure_loss += structureLoss.item()
blue_noise_loss += blueNoiseLoss.item()
if batch_idx % 100 == 0:
tm = datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S.%f')
print("%s >> [%d/%d] iter:%d loss:%4.4f "%(tm, epoch+1, self.n_epochs, batch_idx+1, loss.item()))
epoch_loss = dict()
epoch_loss['total_loss'] = total_loss / (batch_idx+1)
epoch_loss['quantize_loss'] = quantize_loss / (batch_idx+1)
epoch_loss['tone_loss'] = tone_loss / (batch_idx+1)
epoch_loss['structure_loss'] = structure_loss / (batch_idx+1)
epoch_loss['bluenoise_loss'] = blue_noise_loss / (batch_idx+1)
epoch_loss['feature_loss'] = feature_loss / (batch_idx+1)
return epoch_loss
def _valid_epoch(self, epoch):
self.model.eval()
total_loss = 0
with torch.no_grad():
for batch_idx, (color, halftone) in enumerate(self.valid_data_loader):
color, halftone = self._to_variable(color, halftone)
output = self.model(color, halftone)
quantizeLoss = self.quantizeLoss(output[0])
toneLoss = self.toneLoss(output[0], color)
structureLoss = self.structureLoss(output[0], color)
featureLoss = self.featureLoss(output[0], bgr2gray(color))
loss = self.toneLossWeight * toneLoss \
+ self.quantizeLossWeight * quantizeLoss \
+ self.structureLossWeight * structureLoss \
+ self.featureLossWeight * featureLoss
total_loss += loss.item()
#! save intermediate images
gray_imgs = tensor2array(output[0])
color_imgs = tensor2array(output[-1])
save_images_from_batch(gray_imgs, self.val_halftone, None, batch_idx)
save_images_from_batch(color_imgs, self.val_restored, None, batch_idx)
return total_loss
def save_loss(self, epoch_loss, epoch):
if epoch == 0:
for key in epoch_loss:
save_list(os.path.join(self.cache, key), [epoch_loss[key]], append_mode=False)
else:
for key in epoch_loss:
save_list(os.path.join(self.cache, key), [epoch_loss[key]], append_mode=True)
def load_checkpoint(self, checkpt_path):
print("-loading checkpoint from: {} ...".format(checkpt_path))
checkpoint = torch.load(checkpt_path)
self.start_epoch = checkpoint['epoch'] + 1
self.monitor_best = checkpoint['monitor_best']
self.model.load_state_dict(checkpoint['state_dict'])
self.optimizer.load_state_dict(checkpoint['optimizer'])
print("-pretrained checkpoint loaded.")
def save_checkpoint(self, epoch, save_best=False):
state = {
'epoch': epoch,
'state_dict': self.model.state_dict(),
'optimizer': self.optimizer.state_dict(),
'monitor_best': self.monitor_best
}
save_path = os.path.join(self.checkpoint_dir, 'model_last.pth.tar')
if save_best:
save_path = os.path.join(self.checkpoint_dir, 'model_best.pth.tar')
torch.save(state, save_path)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='InvHalf')
parser.add_argument('-c', '--config', default=None, type=str,
help='config file path (default: None)')
parser.add_argument('-r', '--resume', default=None, type=str,
help='path to latest checkpoint (default: None)')
args = parser.parse_args()
config_dict = json.load(open(args.config))
node = Trainer(config_dict, resume=args.resume)
node._train()