Spaces:
Runtime error
Runtime error
File size: 12,782 Bytes
6e70c4a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 |
import os, glob, datetime, time
import argparse, json
import torch
import torch.optim as optim
from torch.autograd import Variable
import torchvision
from torch.utils.data import DataLoader
from torch.backends import cudnn
from model.base_module import tensor2array
from model.model import ResHalf
from model.loss import *
from utils.dataset import HalftoneVOC2012 as Dataset
from utils.util import ensure_dir, save_list, save_images_from_batch
class Trainer():
def __init__(self, config, resume):
self.config = config
self.name = config['name']
self.resume_path = resume
self.n_epochs = config['trainer']['epochs']
self.with_cuda = config['cuda'] and torch.cuda.is_available()
self.seed = config['seed']
self.start_epoch = 0
self.save_freq = config['trainer']['save_epochs']
self.checkpoint_dir = os.path.join(config['save_dir'], self.name)
ensure_dir(self.checkpoint_dir)
json.dump(config, open(os.path.join(self.checkpoint_dir, 'config.json'), 'w'),
indent=4, sort_keys=False)
print("@Workspace: %s *************"%self.checkpoint_dir)
self.cache = os.path.join(self.checkpoint_dir, 'train_cache')
self.val_halftone = os.path.join(self.cache, 'halftone')
self.val_restored = os.path.join(self.cache, 'restored')
ensure_dir(self.val_halftone)
ensure_dir(self.val_restored)
## model
self.model = eval(config['model'])()
if self.config['multi-gpus']:
self.model = torch.nn.DataParallel(self.model).cuda()
elif self.with_cuda:
self.model = self.model.cuda()
## optimizer
self.optimizer = getattr(optim, config['optimizer_type'])(self.model.parameters(), **config['optimizer'])
self.lr_sheduler = optim.lr_scheduler.ReduceLROnPlateau(self.optimizer, **config['lr_sheduler'])
## dataset loader
with open(os.path.join(config['data_dir'], config['data_loader']['dataset'])) as f:
dataset = json.load(f)
train_set = Dataset(dataset['train'])
self.train_data_loader = DataLoader(train_set, batch_size=config['data_loader']['batch_size'],
shuffle=config['data_loader']['shuffle'],
num_workers=config['data_loader']['num_workers'])
val_set = Dataset(dataset['val'])
self.valid_data_loader = DataLoader(val_set, batch_size=config['data_loader']['batch_size'],
shuffle=False,
num_workers=config['data_loader']['num_workers'])
# special dataloader: constant color images
with open(os.path.join(config['data_dir'], config['data_loader']['special_set'])) as f:
dataset = json.load(f)
specialSet = Dataset(dataset['train'])
self.specialDataloader = DataLoader(specialSet, batch_size=config['data_loader']['batch_size'],
shuffle=config['data_loader']['shuffle'],
num_workers=config['data_loader']['num_workers'])
## loss function
self.quantizeLoss = eval(config['quantizeLoss'])
self.quantizeLossWeight = config['quantizeLossWeight']
self.toneLoss = eval(config['toneLoss'])
self.toneLossWeight = config['toneLossWeight']
self.structureLoss = eval(config['structureLoss'])
self.structureLossWeight = config['structureLossWeight']
self.restoreLoss = eval(config['restoreLoss'])
self.restoreLossWeight = config['restoreLossWeight']
# quantize [-1,1] data to be {-1,1}
self.quantizer = lambda x: Quantize.apply(0.5 * (x + 1.)) * 2. - 1.
self.blueNoiseLossWeight = config['blueNoiseLossWeight']
self.vggloss = Vgg19Loss()
self.vggLossWeight = config['vggLossWeight']
# resume checkpoint or load warm-up checkpoint
checkpt_path = self.config['initial_ckpt']
if self.resume_path:
checkpt_path = self.resume_path
assert os.path.exists(checkpt_path), 'Invalid checkpoint Path: %s' % checkpt_path
self.load_checkpoint(checkpt_path)
def _train(self):
torch.manual_seed(self.config['seed'])
torch.cuda.manual_seed(self.config['seed'])
cudnn.benchmark = True
start_time = time.time()
self.monitor_best = 999.
for epoch in range(self.start_epoch, self.n_epochs + 1):
ep_st = time.time()
epoch_loss = self._train_epoch(epoch)
# perform lr_sheduler
self.lr_sheduler.step(epoch_loss['total_loss'])
epoch_lr = self.optimizer.state_dict()['param_groups'][0]['lr']
epoch_metric = self._valid_epoch(epoch)
print("[*] --- epoch: %d/%d | loss: %4.4f | metric: %4.4f | time-consumed: %4.2f ---" % \
(epoch+1, self.n_epochs, epoch_loss['total_loss'], epoch_metric, (time.time()-ep_st)))
# save losses and learning rate
epoch_loss['metric'] = epoch_metric
epoch_loss['lr'] = epoch_lr
self.save_loss(epoch_loss, epoch)
if ((epoch+1) % self.save_freq == 0 or epoch == (self.n_epochs-1)):
print('---------- saving model ...')
self.save_checkpoint(epoch)
if self.monitor_best > epoch_metric:
self.monitor_best = epoch_metric
self.save_checkpoint(epoch, save_best=True)
print("Training finished! consumed %f sec" % (time.time() - start_time))
def _to_variable(self, data, target):
data, target = Variable(data), Variable(target)
if self.with_cuda:
data, target = data.cuda(), target.cuda()
return data, target
def _train_epoch(self, epoch):
self.model.train()
total_loss, quantize_loss, restore_loss = 0, 0, 0
tone_loss, structure_loss, blue_noise_loss = 0, 0, 0
specialIter = iter(self.specialDataloader)
time_stamp = time.time()
for batch_idx, (color, halftone) in enumerate(self.train_data_loader):
color, halftone = self._to_variable(color, halftone)
# special data
try:
specialColor, specialHalftone = next(specialIter)
except StopIteration:
# reinitialize data loader
specialIter = iter(self.specialDataloader)
specialColor, specialHalftone = next(specialIter)
specialColor, specialHalftone = self._to_variable(specialColor, specialHalftone)
self.optimizer.zero_grad()
output = self.model(color, halftone)
quantizeLoss = self.quantizeLoss(output[0])
toneLoss = self.toneLoss(output[0], color)
structureLoss = self.structureLoss(output[0], color)
# restore
restoredColor = output[-1]
restoreLoss = self.restoreLoss(restoredColor, color)
vggLoss = self.vggloss(restoredColor / 2. + 0.5, color / 2. + 0.5)
# special data
output = self.model(specialColor, specialHalftone)
toneLossSpecial = self.toneLoss(output[0], specialColor)
blueNoiseLoss = l1_loss(output[1], output[2])
quantizeLossSpecial = self.quantizeLoss(output[0])
loss = (self.toneLossWeight * toneLoss + self.blueNoiseLossWeight*toneLossSpecial) \
+ self.quantizeLossWeight * (0.5*quantizeLoss + 0.5*quantizeLossSpecial) \
+ self.structureLossWeight * structureLoss \
+ self.blueNoiseLossWeight * blueNoiseLoss \
+ self.vggLossWeight * vggLoss \
+ self.restoreLossWeight * restoreLoss
loss.backward()
# apply grad clip to make training roboust
# torch.nn.utils.clip_grad_norm_(self.model.parameters(), 0.0001)
self.optimizer.step()
total_loss += loss.item()
quantize_loss += quantizeLoss.item()
restore_loss += (self.restoreLossWeight*restoreLoss + self.vggLossWeight*vggLoss).item()
tone_loss += toneLoss.item()
structure_loss += structureLoss.item()
blue_noise_loss += blueNoiseLoss.item()
if batch_idx % 100 == 0:
tm = datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S.%f')
print("%s >> [%d/%d] iter:%d loss:%4.4f "%(tm, epoch+1, self.n_epochs, batch_idx+1, loss.item()))
epoch_loss = dict()
epoch_loss['total_loss'] = total_loss / (batch_idx+1)
epoch_loss['quantize_loss'] = quantize_loss / (batch_idx+1)
epoch_loss['tone_loss'] = tone_loss / (batch_idx+1)
epoch_loss['structure_loss'] = structure_loss / (batch_idx+1)
epoch_loss['bluenoise_loss'] = blue_noise_loss / (batch_idx+1)
epoch_loss['restore_loss'] = restore_loss / (batch_idx+1)
return epoch_loss
def _valid_epoch(self, epoch):
self.model.eval()
total_loss = 0
with torch.no_grad():
for batch_idx, (color, halftone) in enumerate(self.valid_data_loader):
color, halftone = self._to_variable(color, halftone)
output = self.model(color, halftone)
quantizeLoss = self.quantizeLoss(output[0])
toneLoss = self.toneLoss(output[0], color)
structureLoss = self.structureLoss(output[0], color)
# restore
restoredColor = output[-1]
restoreLoss = self.restoreLoss(restoredColor, color)
vggLoss = self.vggloss(restoredColor / 2. + 0.5, color / 2. + 0.5)
loss = self.toneLossWeight * toneLoss \
+ self.quantizeLossWeight * quantizeLoss \
+ self.structureLossWeight * structureLoss \
+ self.vggLossWeight * vggLoss \
+ self.restoreLossWeight * restoreLoss
total_loss += loss.item()
#! save intermediate images
gray_imgs = tensor2array(output[0])
color_imgs = tensor2array(output[-1])
save_images_from_batch(gray_imgs, self.val_halftone, None, batch_idx)
save_images_from_batch(color_imgs, self.val_restored, None, batch_idx)
return total_loss
def save_loss(self, epoch_loss, epoch):
if epoch == 0:
for key in epoch_loss:
save_list(os.path.join(self.cache, key), [epoch_loss[key]], append_mode=False)
else:
for key in epoch_loss:
save_list(os.path.join(self.cache, key), [epoch_loss[key]], append_mode=True)
def load_checkpoint(self, checkpt_path):
print("-loading checkpoint from: {} ...".format(checkpt_path))
if self.resume_path:
checkpoint = torch.load(checkpt_path)
self.start_epoch = checkpoint['epoch'] + 1
self.monitor_best = checkpoint['monitor_best']
self.model.load_state_dict(checkpoint['state_dict'])
self.optimizer.load_state_dict(checkpoint['optimizer'])
else:
checkpoint = torch.load(checkpt_path)
self.model.load_state_dict(checkpoint['state_dict'], strict=False)
print("-pretrained checkpoint loaded.")
def save_checkpoint(self, epoch, save_best=False):
state = {
'epoch': epoch,
'state_dict': self.model.state_dict(),
'optimizer': self.optimizer.state_dict(),
'monitor_best': self.monitor_best
}
save_path = os.path.join(self.checkpoint_dir, 'model_last.pth.tar')
if save_best:
save_path = os.path.join(self.checkpoint_dir, 'model_best.pth.tar')
torch.save(state, save_path)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='InvHalf')
parser.add_argument('-c', '--config', default=None, type=str,
help='config file path (default: None)')
parser.add_argument('-r', '--resume', default=None, type=str,
help='path to latest checkpoint (default: None)')
args = parser.parse_args()
config_dict = json.load(open(args.config))
node = Trainer(config_dict, resume=args.resume)
node._train() |