File size: 12,782 Bytes
6e70c4a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
import os, glob, datetime, time
import argparse, json

import torch
import torch.optim as optim
from torch.autograd import Variable
import torchvision
from torch.utils.data import DataLoader
from torch.backends import cudnn

from model.base_module import tensor2array
from model.model import ResHalf
from model.loss import *
from utils.dataset import HalftoneVOC2012 as Dataset
from utils.util import ensure_dir, save_list, save_images_from_batch


class Trainer():
    def __init__(self, config, resume):
        self.config = config
        self.name = config['name']
        self.resume_path = resume
        self.n_epochs = config['trainer']['epochs']
        self.with_cuda = config['cuda'] and torch.cuda.is_available()
        self.seed = config['seed']
        self.start_epoch = 0
        self.save_freq = config['trainer']['save_epochs']
        self.checkpoint_dir = os.path.join(config['save_dir'], self.name)
        ensure_dir(self.checkpoint_dir)
        json.dump(config, open(os.path.join(self.checkpoint_dir, 'config.json'), 'w'),
                  indent=4, sort_keys=False)
        print("@Workspace: %s *************"%self.checkpoint_dir)
        self.cache = os.path.join(self.checkpoint_dir, 'train_cache')
        self.val_halftone = os.path.join(self.cache, 'halftone')
        self.val_restored = os.path.join(self.cache, 'restored')
        ensure_dir(self.val_halftone)
        ensure_dir(self.val_restored)

        ## model        
        self.model = eval(config['model'])()
        if self.config['multi-gpus']:
            self.model = torch.nn.DataParallel(self.model).cuda()
        elif self.with_cuda:
            self.model = self.model.cuda()

        ## optimizer
        self.optimizer = getattr(optim, config['optimizer_type'])(self.model.parameters(), **config['optimizer'])
        self.lr_sheduler = optim.lr_scheduler.ReduceLROnPlateau(self.optimizer, **config['lr_sheduler'])
        
        ## dataset loader
        with open(os.path.join(config['data_dir'], config['data_loader']['dataset'])) as f:
            dataset = json.load(f)
        train_set = Dataset(dataset['train'])
        self.train_data_loader = DataLoader(train_set, batch_size=config['data_loader']['batch_size'],
                                   shuffle=config['data_loader']['shuffle'],
                                   num_workers=config['data_loader']['num_workers'])
        val_set = Dataset(dataset['val'])
        self.valid_data_loader = DataLoader(val_set, batch_size=config['data_loader']['batch_size'],
                                   shuffle=False,
                                   num_workers=config['data_loader']['num_workers'])
        # special dataloader: constant color images
        with open(os.path.join(config['data_dir'], config['data_loader']['special_set'])) as f:
            dataset = json.load(f)
        specialSet = Dataset(dataset['train'])
        self.specialDataloader = DataLoader(specialSet, batch_size=config['data_loader']['batch_size'],
                                    shuffle=config['data_loader']['shuffle'],
                                    num_workers=config['data_loader']['num_workers'])

        ## loss function
        self.quantizeLoss = eval(config['quantizeLoss'])
        self.quantizeLossWeight = config['quantizeLossWeight']
        self.toneLoss = eval(config['toneLoss'])
        self.toneLossWeight = config['toneLossWeight']
        self.structureLoss = eval(config['structureLoss'])
        self.structureLossWeight = config['structureLossWeight']
        self.restoreLoss = eval(config['restoreLoss'])
        self.restoreLossWeight = config['restoreLossWeight']
        # quantize [-1,1] data to be {-1,1}
        self.quantizer = lambda x: Quantize.apply(0.5 * (x + 1.)) * 2. - 1.
        self.blueNoiseLossWeight = config['blueNoiseLossWeight']
        self.vggloss = Vgg19Loss()
        self.vggLossWeight = config['vggLossWeight']

        # resume checkpoint or load warm-up checkpoint
        checkpt_path = self.config['initial_ckpt']
        if self.resume_path:
            checkpt_path = self.resume_path
        assert os.path.exists(checkpt_path), 'Invalid checkpoint Path: %s' % checkpt_path
        self.load_checkpoint(checkpt_path)
        
    
    def _train(self):
        torch.manual_seed(self.config['seed'])
        torch.cuda.manual_seed(self.config['seed'])
        cudnn.benchmark = True
        
        start_time = time.time()
        self.monitor_best = 999.
        for epoch in range(self.start_epoch, self.n_epochs + 1):
            ep_st = time.time()
            epoch_loss = self._train_epoch(epoch)
            # perform lr_sheduler
            self.lr_sheduler.step(epoch_loss['total_loss'])
            epoch_lr = self.optimizer.state_dict()['param_groups'][0]['lr']
            epoch_metric = self._valid_epoch(epoch)
            print("[*] --- epoch: %d/%d | loss: %4.4f | metric: %4.4f | time-consumed: %4.2f ---" % \
                (epoch+1, self.n_epochs, epoch_loss['total_loss'], epoch_metric, (time.time()-ep_st)))

            # save losses and learning rate
            epoch_loss['metric'] = epoch_metric
            epoch_loss['lr'] = epoch_lr
            self.save_loss(epoch_loss, epoch)
            if ((epoch+1) % self.save_freq == 0 or epoch == (self.n_epochs-1)):
                print('---------- saving model ...')
                self.save_checkpoint(epoch)
            if self.monitor_best > epoch_metric:
                self.monitor_best = epoch_metric
                self.save_checkpoint(epoch, save_best=True)

        print("Training finished! consumed %f sec" % (time.time() - start_time))


    def _to_variable(self, data, target):
        data, target = Variable(data), Variable(target)
        if self.with_cuda:
            data, target = data.cuda(), target.cuda()
        return data, target


    def _train_epoch(self, epoch):
        self.model.train()
        total_loss, quantize_loss, restore_loss = 0, 0, 0
        tone_loss, structure_loss, blue_noise_loss = 0, 0, 0

        specialIter = iter(self.specialDataloader)
        time_stamp = time.time()
        for batch_idx, (color, halftone) in enumerate(self.train_data_loader):
            color, halftone = self._to_variable(color, halftone)
            # special data
            try:
                specialColor, specialHalftone = next(specialIter)
            except StopIteration:
                # reinitialize data loader
                specialIter = iter(self.specialDataloader)
                specialColor, specialHalftone = next(specialIter)
            specialColor, specialHalftone = self._to_variable(specialColor, specialHalftone)
            self.optimizer.zero_grad()
            output = self.model(color, halftone)
            quantizeLoss = self.quantizeLoss(output[0])
            toneLoss = self.toneLoss(output[0], color)
            structureLoss = self.structureLoss(output[0], color)

            # restore
            restoredColor = output[-1]
            restoreLoss = self.restoreLoss(restoredColor, color)
            vggLoss = self.vggloss(restoredColor / 2. + 0.5, color / 2. + 0.5)

            # special data
            output = self.model(specialColor, specialHalftone)
            toneLossSpecial = self.toneLoss(output[0], specialColor)
            blueNoiseLoss = l1_loss(output[1], output[2])
            quantizeLossSpecial = self.quantizeLoss(output[0])
            loss = (self.toneLossWeight * toneLoss + self.blueNoiseLossWeight*toneLossSpecial) \
                   + self.quantizeLossWeight * (0.5*quantizeLoss + 0.5*quantizeLossSpecial) \
                   + self.structureLossWeight * structureLoss \
                   + self.blueNoiseLossWeight * blueNoiseLoss \
                   + self.vggLossWeight * vggLoss \
                   + self.restoreLossWeight * restoreLoss
                   
            loss.backward()
            # apply grad clip to make training roboust
            # torch.nn.utils.clip_grad_norm_(self.model.parameters(), 0.0001)
            self.optimizer.step()

            total_loss += loss.item()
            quantize_loss += quantizeLoss.item()
            restore_loss += (self.restoreLossWeight*restoreLoss + self.vggLossWeight*vggLoss).item()
            tone_loss += toneLoss.item()
            structure_loss += structureLoss.item()
            blue_noise_loss += blueNoiseLoss.item()
            if batch_idx % 100 == 0:
                tm = datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S.%f')
                print("%s >> [%d/%d] iter:%d loss:%4.4f "%(tm, epoch+1, self.n_epochs, batch_idx+1, loss.item()))

        epoch_loss = dict()
        epoch_loss['total_loss'] = total_loss / (batch_idx+1)
        epoch_loss['quantize_loss'] = quantize_loss / (batch_idx+1)
        epoch_loss['tone_loss'] = tone_loss / (batch_idx+1)
        epoch_loss['structure_loss'] = structure_loss / (batch_idx+1)
        epoch_loss['bluenoise_loss'] = blue_noise_loss / (batch_idx+1)
        epoch_loss['restore_loss'] = restore_loss / (batch_idx+1)

        return epoch_loss


    def _valid_epoch(self, epoch):
        self.model.eval()
        total_loss = 0
        with torch.no_grad():
            for batch_idx, (color, halftone) in enumerate(self.valid_data_loader):
                color, halftone = self._to_variable(color, halftone)
                output = self.model(color, halftone)
                quantizeLoss = self.quantizeLoss(output[0])
                toneLoss = self.toneLoss(output[0], color)
                structureLoss = self.structureLoss(output[0], color)
                # restore
                restoredColor = output[-1]
                restoreLoss = self.restoreLoss(restoredColor, color)
                vggLoss = self.vggloss(restoredColor / 2. + 0.5, color / 2. + 0.5)

                loss = self.toneLossWeight * toneLoss \
                       + self.quantizeLossWeight * quantizeLoss \
                       + self.structureLossWeight * structureLoss \
                       + self.vggLossWeight * vggLoss \
                       + self.restoreLossWeight * restoreLoss

                total_loss += loss.item()
                #! save intermediate images
                gray_imgs = tensor2array(output[0])
                color_imgs = tensor2array(output[-1])
                save_images_from_batch(gray_imgs, self.val_halftone, None, batch_idx)
                save_images_from_batch(color_imgs, self.val_restored, None, batch_idx)
            
            return total_loss


    def save_loss(self, epoch_loss, epoch):
        if epoch == 0:
            for key in epoch_loss:
                save_list(os.path.join(self.cache, key), [epoch_loss[key]], append_mode=False)
        else:
            for key in epoch_loss:
                save_list(os.path.join(self.cache, key), [epoch_loss[key]], append_mode=True)


    def load_checkpoint(self, checkpt_path):
        print("-loading checkpoint from: {} ...".format(checkpt_path))
        if self.resume_path:
            checkpoint = torch.load(checkpt_path)
            self.start_epoch = checkpoint['epoch'] + 1
            self.monitor_best = checkpoint['monitor_best']
            self.model.load_state_dict(checkpoint['state_dict'])
            self.optimizer.load_state_dict(checkpoint['optimizer'])
        else:
            checkpoint = torch.load(checkpt_path)
            self.model.load_state_dict(checkpoint['state_dict'], strict=False)
        print("-pretrained checkpoint loaded.")

    
    def save_checkpoint(self, epoch, save_best=False):
        state = {
            'epoch': epoch,
            'state_dict': self.model.state_dict(),
            'optimizer': self.optimizer.state_dict(),
            'monitor_best': self.monitor_best
        }
        save_path = os.path.join(self.checkpoint_dir, 'model_last.pth.tar')
        if save_best:
            save_path = os.path.join(self.checkpoint_dir, 'model_best.pth.tar')
        torch.save(state, save_path)


if __name__ == '__main__':
    parser = argparse.ArgumentParser(description='InvHalf')
    parser.add_argument('-c', '--config', default=None, type=str,
                        help='config file path (default: None)')
    parser.add_argument('-r', '--resume', default=None, type=str,
                        help='path to latest checkpoint (default: None)')
    args = parser.parse_args()
    config_dict = json.load(open(args.config))
    node = Trainer(config_dict, resume=args.resume)
    node._train()