Spaces:
Sleeping
Sleeping
MekkCyber
commited on
Commit
·
7f64e83
1
Parent(s):
1bb9947
changing gradio version
Browse files
README.md
CHANGED
@@ -4,7 +4,7 @@ emoji: 💻
|
|
4 |
colorFrom: blue
|
5 |
colorTo: red
|
6 |
sdk: gradio
|
7 |
-
sdk_version: 4.
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
|
|
|
4 |
colorFrom: blue
|
5 |
colorTo: red
|
6 |
sdk: gradio
|
7 |
+
sdk_version: 4.27.0
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
|
app.py
CHANGED
@@ -196,132 +196,4 @@ with gr.Blocks(theme=gr.themes.Soft()) as app:
|
|
196 |
|
197 |
|
198 |
# Launch the app
|
199 |
-
app.launch()
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
from torchao.quantization import (
|
209 |
-
int4_weight_only,
|
210 |
-
int8_dynamic_activation_int8_weight,
|
211 |
-
int8_weight_only,
|
212 |
-
)
|
213 |
-
|
214 |
-
# import gradio as gr
|
215 |
-
# import torch
|
216 |
-
# from transformers import AutoModelForCausalLM, AutoTokenizer
|
217 |
-
# import torch.ao.quantization as quant
|
218 |
-
# import os
|
219 |
-
# from huggingface_hub import HfApi
|
220 |
-
# import tempfile
|
221 |
-
# import torch.utils.data as data
|
222 |
-
# from torchao.quantization import quantize_
|
223 |
-
|
224 |
-
# def load_calibration_dataset(tokenizer, num_samples=100):
|
225 |
-
# # This is a placeholder. In a real scenario, you'd load actual data.
|
226 |
-
# dummy_texts = ["This is a sample text" for _ in range(num_samples)]
|
227 |
-
# encodings = tokenizer(dummy_texts, truncation=True, padding=True, return_tensors="pt")
|
228 |
-
# dataset = data.TensorDataset(encodings['input_ids'], encodings['attention_mask'])
|
229 |
-
# return data.DataLoader(dataset, batch_size=1)
|
230 |
-
|
231 |
-
# def load_model(model_name):
|
232 |
-
# print(f"Loading model: {model_name}")
|
233 |
-
# model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True, torch_dtype=torch.bfloat16, device_map="auto")
|
234 |
-
# tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
235 |
-
# return model, tokenizer
|
236 |
-
|
237 |
-
# def quantize_model(model, quant_type, dtype):
|
238 |
-
# print(f"Quantizing model: {quant_type} - {dtype}")
|
239 |
-
# quantize_(model, _STR_TO_METHOD[dtype](group_size=128))
|
240 |
-
|
241 |
-
# def save_model(model, model_name, quant_type, dtype):
|
242 |
-
# print("Saving quantized model")
|
243 |
-
# model.save_pretrained("medmekk/model_llama", safe_serialization=False)
|
244 |
-
# with tempfile.TemporaryDirectory() as tmpdirname:
|
245 |
-
# model.save_pretrained(tmpdirname)
|
246 |
-
|
247 |
-
# # Create a new repo name
|
248 |
-
# repo_name = f"{model_name.split('/')[-1]}-quantized-{quant_type.lower()}-{dtype}bit"
|
249 |
-
|
250 |
-
# # Push to Hub
|
251 |
-
# api = HfApi()
|
252 |
-
# api.create_repo(repo_name, exist_ok=True)
|
253 |
-
# api.upload_folder(
|
254 |
-
# folder_path=tmpdirname,
|
255 |
-
# repo_id=repo_name,
|
256 |
-
# repo_type="model",
|
257 |
-
# )
|
258 |
-
|
259 |
-
# return f"https://huggingface.co/{repo_name}"
|
260 |
-
|
261 |
-
# _STR_TO_METHOD = {
|
262 |
-
# "int4_weight_only": int4_weight_only,
|
263 |
-
# "int8_weight_only": int8_weight_only,
|
264 |
-
# "int8_dynamic_activation_int8_weight": int8_dynamic_activation_int8_weight,
|
265 |
-
# }
|
266 |
-
|
267 |
-
# def quantize_and_save(model_name, quant_type, dtype):
|
268 |
-
|
269 |
-
# model, tokenizer = load_model(model_name)
|
270 |
-
# quantize_model(model, quant_type, dtype)
|
271 |
-
# print(model.device)
|
272 |
-
# return save_model(model, model_name, quant_type, dtype)
|
273 |
-
|
274 |
-
|
275 |
-
# # Gradio interface
|
276 |
-
# with gr.Blocks(theme=gr.themes.Soft()) as app:
|
277 |
-
# gr.Markdown(
|
278 |
-
# """
|
279 |
-
# # 🚀 Model Quantization App
|
280 |
-
|
281 |
-
# Quantize your favorite Hugging Face models and save them to your profile!
|
282 |
-
# """
|
283 |
-
# )
|
284 |
-
|
285 |
-
# with gr.Row():
|
286 |
-
# with gr.Column():
|
287 |
-
# model_name = gr.Textbox(
|
288 |
-
# label="Model Name",
|
289 |
-
# placeholder="e.g., gpt2, distilgpt2",
|
290 |
-
# value="meta-llama/Meta-Llama-3-8B-Instruct"
|
291 |
-
# )
|
292 |
-
# quant_type = gr.Dropdown(
|
293 |
-
# label="Quantization Type",
|
294 |
-
# choices=["Dynamic", "Static"],
|
295 |
-
# value="Dynamic"
|
296 |
-
# )
|
297 |
-
# dtype = gr.Dropdown(
|
298 |
-
# label="Data Type",
|
299 |
-
# choices=["int4_weight_only", "int8_weight_only", "int8_dynamic_activation_int8_weight"],
|
300 |
-
# value="int4_weight_only"
|
301 |
-
# )
|
302 |
-
|
303 |
-
# with gr.Column():
|
304 |
-
# quantize_button = gr.Button("Quantize and Save Model", variant="primary")
|
305 |
-
# output_link = gr.Textbox(label="Output", interactive=False)
|
306 |
-
|
307 |
-
# gr.Markdown(
|
308 |
-
# """
|
309 |
-
# ## Instructions
|
310 |
-
# 1. Enter the name of the Hugging Face model you want to quantize.
|
311 |
-
# 2. Choose the quantization type.
|
312 |
-
# 3. If using Weight Only quantization, select the number of bits.
|
313 |
-
# 4. Click "Quantize and Save Model" to start the process.
|
314 |
-
# 5. Once complete, you'll receive a link to the quantized model on Hugging Face.
|
315 |
-
|
316 |
-
# Note: This process may take some time depending on the model size and your hardware.
|
317 |
-
# """
|
318 |
-
# )
|
319 |
-
|
320 |
-
# quantize_button.click(
|
321 |
-
# fn=quantize_and_save,
|
322 |
-
# inputs=[model_name, quant_type, dtype],
|
323 |
-
# outputs=[output_link]
|
324 |
-
# )
|
325 |
-
|
326 |
-
# # Launch the app
|
327 |
-
# app.launch(share=True)
|
|
|
196 |
|
197 |
|
198 |
# Launch the app
|
199 |
+
app.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|