import tensorflow as tf import transformers class SentenceModel(tf.keras.Model): def __init__(self, modelBase, from_pt=True, *args, **kwargs): super().__init__(*args, **kwargs) self.transformer = transformers.TFAutoModel.from_pretrained(modelBase, from_pt=from_pt) @tf.function def generateSingleEmbedding(self, input, training=False): inds, att = input embs = self.transformer({'input_ids': inds, 'attention_mask': att}, training=training)[0] outAtt = tf.cast(att, tf.float32) sampleLength = tf.reduce_sum(outAtt, axis=-1, keepdims=True) maskedEmbs = embs * tf.expand_dims(outAtt, axis=-1) return tf.reduce_sum(maskedEmbs, axis=1) / tf.cast(sampleLength, tf.float32) @tf.function def generateMultipleEmbeddings(self, input, training=False): inds, att = input embs = self.transformer({'input_ids': inds, 'attention_mask': att}, training=training)['last_hidden_state'] print("Embs:", embs.shape) outAtt = tf.cast(att, tf.float32) sampleLength = tf.reduce_sum(outAtt, axis=-1, keepdims=True) print("Att mask:", tf.expand_dims(outAtt, axis=-1).shape) maskedEmbs = embs * tf.expand_dims(outAtt, axis=-1) return tf.reduce_sum(maskedEmbs, axis=1) / tf.cast(sampleLength, tf.float32) @tf.function def call(self, inputs, training=False, mask=None): return self.generateSingleEmbedding(inputs, training) def save_pretrained(self, saveName): self.transformer.save_pretrained(saveName) def from_pretrained(self, saveName): self.transformer = transformers.TFAutoModel.from_pretrained(saveName) class SentenceModelWithLinearTransformation(SentenceModel): def __init__(self, modelBase, embeddingSize=640, *args, **kwargs): super().__init__(modelBase, *args, **kwargs) self.postTransformation = tf.keras.layers.Dense(embeddingSize, activation='linear') @tf.function def call(self, inputs, training=False, mask=None): return self.postTransformation(self.generateMultipleEmbeddings(inputs, training)) class SentenceModelWithTanHTransformation(SentenceModel): def __init__(self, modelBase, embeddingSize=640, *args, **kwargs): super().__init__(modelBase, *args, **kwargs) self.postTransformation = tf.keras.layers.Dense(embeddingSize, activation='tanh') self.postTransformation2 = tf.keras.layers.Dense(embeddingSize, activation='linear') @tf.function def call(self, inputs, training=False, mask=None): meanEmbedding = self.generateSingleEmbedding(inputs, training) d1 = self.postTransformation(meanEmbedding) return self.postTransformation2(d1)