import transformers def tf_example(texts, model_name='M-CLIP/XLM-Roberta-Large-Vit-L-14'): from multilingual_clip import tf_multilingual_clip model = tf_multilingual_clip.MultiLingualCLIP.from_pretrained(model_name) tokenizer = transformers.AutoTokenizer.from_pretrained(model_name) inData = tokenizer.batch_encode_plus(texts, return_tensors='tf', padding=True) embeddings = model(inData) print(embeddings.shape) def pt_example(texts, model_name='M-CLIP/XLM-Roberta-Large-Vit-L-14'): from multilingual_clip import pt_multilingual_clip model = pt_multilingual_clip.MultilingualCLIP.from_pretrained(model_name) tokenizer = transformers.AutoTokenizer.from_pretrained(model_name) embeddings = model.forward(texts, tokenizer) print(embeddings.shape) if __name__ == '__main__': exampleTexts = [ 'Three blind horses listening to Mozart.', 'Älgen är skogens konung!', 'Wie leben Eisbären in der Antarktis?', 'Вы знали, что все белые медведи левши?' ] # tf_example(exampleTexts) pt_example(exampleTexts)