|
from typing import Any, Callable, Dict, List, Optional, Union, Tuple |
|
from collections import OrderedDict |
|
import os |
|
import PIL |
|
import numpy as np |
|
|
|
import torch |
|
from torchvision import transforms as T |
|
|
|
from safetensors import safe_open |
|
from huggingface_hub.utils import validate_hf_hub_args |
|
from transformers import CLIPImageProcessor, CLIPTokenizer |
|
from diffusers import StableDiffusionXLPipeline |
|
from diffusers.pipelines.stable_diffusion_xl import StableDiffusionXLPipelineOutput |
|
from diffusers.utils import ( |
|
_get_model_file, |
|
is_transformers_available, |
|
logging, |
|
) |
|
|
|
from . import PhotoMakerIDEncoder |
|
|
|
PipelineImageInput = Union[ |
|
PIL.Image.Image, |
|
torch.FloatTensor, |
|
List[PIL.Image.Image], |
|
List[torch.FloatTensor], |
|
] |
|
|
|
|
|
class PhotoMakerStableDiffusionXLPipeline(StableDiffusionXLPipeline): |
|
@validate_hf_hub_args |
|
def load_photomaker_adapter( |
|
self, |
|
pretrained_model_name_or_path_or_dict: Union[str, Dict[str, torch.Tensor]], |
|
weight_name: str, |
|
subfolder: str = '', |
|
trigger_word: str = 'img', |
|
**kwargs, |
|
): |
|
""" |
|
Parameters: |
|
pretrained_model_name_or_path_or_dict (`str` or `os.PathLike` or `dict`): |
|
Can be either: |
|
|
|
- A string, the *model id* (for example `google/ddpm-celebahq-256`) of a pretrained model hosted on |
|
the Hub. |
|
- A path to a *directory* (for example `./my_model_directory`) containing the model weights saved |
|
with [`ModelMixin.save_pretrained`]. |
|
- A [torch state |
|
dict](https://pytorch.org/tutorials/beginner/saving_loading_models.html#what-is-a-state-dict). |
|
|
|
weight_name (`str`): |
|
The weight name NOT the path to the weight. |
|
|
|
subfolder (`str`, defaults to `""`): |
|
The subfolder location of a model file within a larger model repository on the Hub or locally. |
|
|
|
trigger_word (`str`, *optional*, defaults to `"img"`): |
|
The trigger word is used to identify the position of class word in the text prompt, |
|
and it is recommended not to set it as a common word. |
|
This trigger word must be placed after the class word when used, otherwise, it will affect the performance of the personalized generation. |
|
""" |
|
|
|
|
|
cache_dir = kwargs.pop("cache_dir", None) |
|
force_download = kwargs.pop("force_download", False) |
|
resume_download = kwargs.pop("resume_download", False) |
|
proxies = kwargs.pop("proxies", None) |
|
local_files_only = kwargs.pop("local_files_only", None) |
|
token = kwargs.pop("token", None) |
|
revision = kwargs.pop("revision", None) |
|
|
|
user_agent = { |
|
"file_type": "attn_procs_weights", |
|
"framework": "pytorch", |
|
} |
|
|
|
if not isinstance(pretrained_model_name_or_path_or_dict, dict): |
|
model_file = _get_model_file( |
|
pretrained_model_name_or_path_or_dict, |
|
weights_name=weight_name, |
|
cache_dir=cache_dir, |
|
force_download=force_download, |
|
resume_download=resume_download, |
|
proxies=proxies, |
|
local_files_only=local_files_only, |
|
token=token, |
|
revision=revision, |
|
subfolder=subfolder, |
|
user_agent=user_agent, |
|
) |
|
if weight_name.endswith(".safetensors"): |
|
state_dict = {"id_encoder": {}, "lora_weights": {}} |
|
with safe_open(model_file, framework="pt", device="cpu") as f: |
|
for key in f.keys(): |
|
if key.startswith("id_encoder."): |
|
state_dict["id_encoder"][key.replace("id_encoder.", "")] = f.get_tensor(key) |
|
elif key.startswith("lora_weights."): |
|
state_dict["lora_weights"][key.replace("lora_weights.", "")] = f.get_tensor(key) |
|
else: |
|
state_dict = torch.load(model_file, map_location="cpu") |
|
else: |
|
state_dict = pretrained_model_name_or_path_or_dict |
|
|
|
keys = list(state_dict.keys()) |
|
if keys != ["id_encoder", "lora_weights"]: |
|
raise ValueError("Required keys are (`id_encoder` and `lora_weights`) missing from the state dict.") |
|
|
|
self.trigger_word = trigger_word |
|
|
|
print(f"Loading PhotoMaker components [1] id_encoder from [{pretrained_model_name_or_path_or_dict}]...") |
|
id_encoder = PhotoMakerIDEncoder() |
|
id_encoder.load_state_dict(state_dict["id_encoder"], strict=True) |
|
id_encoder = id_encoder.to(self.device, dtype=self.unet.dtype) |
|
self.id_encoder = id_encoder |
|
self.id_image_processor = CLIPImageProcessor() |
|
|
|
|
|
print(f"Loading PhotoMaker components [2] lora_weights from [{pretrained_model_name_or_path_or_dict}]") |
|
self.load_lora_weights(state_dict["lora_weights"], adapter_name="photomaker") |
|
|
|
|
|
if self.tokenizer is not None: |
|
self.tokenizer.add_tokens([self.trigger_word], special_tokens=True) |
|
|
|
self.tokenizer_2.add_tokens([self.trigger_word], special_tokens=True) |
|
|
|
|
|
def encode_prompt_with_trigger_word( |
|
self, |
|
prompt: str, |
|
prompt_2: Optional[str] = None, |
|
num_id_images: int = 1, |
|
device: Optional[torch.device] = None, |
|
prompt_embeds: Optional[torch.FloatTensor] = None, |
|
pooled_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
class_tokens_mask: Optional[torch.LongTensor] = None, |
|
nc_flag: bool = False, |
|
): |
|
device = device or self._execution_device |
|
|
|
if prompt is not None and isinstance(prompt, str): |
|
batch_size = 1 |
|
elif prompt is not None and isinstance(prompt, list): |
|
batch_size = len(prompt) |
|
else: |
|
batch_size = prompt_embeds.shape[0] |
|
|
|
|
|
image_token_id = self.tokenizer_2.convert_tokens_to_ids(self.trigger_word) |
|
|
|
|
|
tokenizers = [self.tokenizer, self.tokenizer_2] if self.tokenizer is not None else [self.tokenizer_2] |
|
text_encoders = ( |
|
[self.text_encoder, self.text_encoder_2] if self.text_encoder is not None else [self.text_encoder_2] |
|
) |
|
|
|
if prompt_embeds is None: |
|
prompt_2 = prompt_2 or prompt |
|
prompt_embeds_list = [] |
|
prompts = [prompt, prompt_2] |
|
for prompt, tokenizer, text_encoder in zip(prompts, tokenizers, text_encoders): |
|
input_ids = tokenizer.encode(prompt) |
|
clean_index = 0 |
|
clean_input_ids = [] |
|
class_token_index = [] |
|
|
|
for i, token_id in enumerate(input_ids): |
|
if token_id == image_token_id: |
|
class_token_index.append(clean_index - 1) |
|
else: |
|
clean_input_ids.append(token_id) |
|
clean_index += 1 |
|
if nc_flag: |
|
return None, None, None |
|
if len(class_token_index) > 1: |
|
raise ValueError( |
|
f"PhotoMaker currently does not support multiple trigger words in a single prompt.\ |
|
Trigger word: {self.trigger_word}, Prompt: {prompt}." |
|
) |
|
elif len(class_token_index) == 0 and not nc_flag: |
|
raise ValueError( |
|
f"PhotoMaker currently does not support multiple trigger words in a single prompt.\ |
|
Trigger word: {self.trigger_word}, Prompt: {prompt}." |
|
) |
|
class_token_index = class_token_index[0] |
|
|
|
|
|
class_token = clean_input_ids[class_token_index] |
|
clean_input_ids = clean_input_ids[:class_token_index] + [class_token] * num_id_images + \ |
|
clean_input_ids[class_token_index+1:] |
|
|
|
|
|
max_len = tokenizer.model_max_length |
|
if len(clean_input_ids) > max_len: |
|
clean_input_ids = clean_input_ids[:max_len] |
|
else: |
|
clean_input_ids = clean_input_ids + [tokenizer.pad_token_id] * ( |
|
max_len - len(clean_input_ids) |
|
) |
|
|
|
class_tokens_mask = [True if class_token_index <= i < class_token_index+num_id_images else False \ |
|
for i in range(len(clean_input_ids))] |
|
|
|
clean_input_ids = torch.tensor(clean_input_ids, dtype=torch.long).unsqueeze(0) |
|
class_tokens_mask = torch.tensor(class_tokens_mask, dtype=torch.bool).unsqueeze(0) |
|
|
|
prompt_embeds = text_encoder( |
|
clean_input_ids.to(device), |
|
output_hidden_states=True, |
|
) |
|
|
|
|
|
pooled_prompt_embeds = prompt_embeds[0] |
|
prompt_embeds = prompt_embeds.hidden_states[-2] |
|
prompt_embeds_list.append(prompt_embeds) |
|
|
|
prompt_embeds = torch.concat(prompt_embeds_list, dim=-1) |
|
|
|
prompt_embeds = prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device) |
|
class_tokens_mask = class_tokens_mask.to(device=device) |
|
|
|
return prompt_embeds, pooled_prompt_embeds, class_tokens_mask |
|
|
|
@property |
|
def interrupt(self): |
|
return self._interrupt |
|
|
|
@torch.no_grad() |
|
def __call__( |
|
self, |
|
prompt: Union[str, List[str]] = None, |
|
prompt_2: Optional[Union[str, List[str]]] = None, |
|
height: Optional[int] = None, |
|
width: Optional[int] = None, |
|
num_inference_steps: int = 50, |
|
denoising_end: Optional[float] = None, |
|
guidance_scale: float = 5.0, |
|
negative_prompt: Optional[Union[str, List[str]]] = None, |
|
negative_prompt_2: Optional[Union[str, List[str]]] = None, |
|
num_images_per_prompt: Optional[int] = 1, |
|
eta: float = 0.0, |
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, |
|
latents: Optional[torch.FloatTensor] = None, |
|
prompt_embeds: Optional[torch.FloatTensor] = None, |
|
negative_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
pooled_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
output_type: Optional[str] = "pil", |
|
return_dict: bool = True, |
|
cross_attention_kwargs: Optional[Dict[str, Any]] = None, |
|
guidance_rescale: float = 0.0, |
|
original_size: Optional[Tuple[int, int]] = None, |
|
crops_coords_top_left: Tuple[int, int] = (0, 0), |
|
target_size: Optional[Tuple[int, int]] = None, |
|
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, |
|
callback_steps: int = 1, |
|
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, |
|
callback_on_step_end_tensor_inputs: List[str] = ["latents"], |
|
|
|
input_id_images: PipelineImageInput = None, |
|
start_merge_step: int = 0, |
|
class_tokens_mask: Optional[torch.LongTensor] = None, |
|
prompt_embeds_text_only: Optional[torch.FloatTensor] = None, |
|
pooled_prompt_embeds_text_only: Optional[torch.FloatTensor] = None, |
|
nc_flag = False, |
|
): |
|
r""" |
|
Function invoked when calling the pipeline for generation. |
|
Only the parameters introduced by PhotoMaker are discussed here. |
|
For explanations of the previous parameters in StableDiffusionXLPipeline, please refer to https://github.com/huggingface/diffusers/blob/v0.25.0/src/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py |
|
|
|
Args: |
|
input_id_images (`PipelineImageInput`, *optional*): |
|
Input ID Image to work with PhotoMaker. |
|
class_tokens_mask (`torch.LongTensor`, *optional*): |
|
Pre-generated class token. When the `prompt_embeds` parameter is provided in advance, it is necessary to prepare the `class_tokens_mask` beforehand for marking out the position of class word. |
|
prompt_embeds_text_only (`torch.FloatTensor`, *optional*): |
|
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not |
|
provided, text embeddings will be generated from `prompt` input argument. |
|
pooled_prompt_embeds_text_only (`torch.FloatTensor`, *optional*): |
|
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. |
|
If not provided, pooled text embeddings will be generated from `prompt` input argument. |
|
|
|
Returns: |
|
[`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] or `tuple`: |
|
[`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] if `return_dict` is True, otherwise a |
|
`tuple`. When returning a tuple, the first element is a list with the generated images. |
|
""" |
|
|
|
height = height or self.unet.config.sample_size * self.vae_scale_factor |
|
width = width or self.unet.config.sample_size * self.vae_scale_factor |
|
|
|
original_size = original_size or (height, width) |
|
target_size = target_size or (height, width) |
|
|
|
|
|
self.check_inputs( |
|
prompt, |
|
prompt_2, |
|
height, |
|
width, |
|
callback_steps, |
|
negative_prompt, |
|
negative_prompt_2, |
|
prompt_embeds, |
|
negative_prompt_embeds, |
|
pooled_prompt_embeds, |
|
negative_pooled_prompt_embeds, |
|
callback_on_step_end_tensor_inputs, |
|
) |
|
|
|
self._interrupt = False |
|
|
|
|
|
if prompt_embeds is not None and class_tokens_mask is None: |
|
raise ValueError( |
|
"If `prompt_embeds` are provided, `class_tokens_mask` also have to be passed. Make sure to generate `class_tokens_mask` from the same tokenizer that was used to generate `prompt_embeds`." |
|
) |
|
|
|
if input_id_images is None: |
|
raise ValueError( |
|
"Provide `input_id_images`. Cannot leave `input_id_images` undefined for PhotoMaker pipeline." |
|
) |
|
if not isinstance(input_id_images, list): |
|
input_id_images = [input_id_images] |
|
|
|
|
|
if prompt is not None and isinstance(prompt, str): |
|
batch_size = 1 |
|
prompt = [prompt] |
|
elif prompt is not None and isinstance(prompt, list): |
|
batch_size = len(prompt) |
|
else: |
|
batch_size = prompt_embeds.shape[0] |
|
|
|
device = self._execution_device |
|
|
|
|
|
|
|
|
|
do_classifier_free_guidance = guidance_scale >= 1.0 |
|
|
|
assert do_classifier_free_guidance |
|
|
|
|
|
num_id_images = len(input_id_images) |
|
if isinstance(prompt, list): |
|
prompt_arr = prompt |
|
negative_prompt_embeds_arr = [] |
|
prompt_embeds_text_only_arr = [] |
|
prompt_embeds_arr = [] |
|
latents_arr = [] |
|
add_time_ids_arr = [] |
|
negative_pooled_prompt_embeds_arr = [] |
|
pooled_prompt_embeds_text_only_arr = [] |
|
pooled_prompt_embeds_arr = [] |
|
for prompt in prompt_arr: |
|
( |
|
prompt_embeds, |
|
pooled_prompt_embeds, |
|
class_tokens_mask, |
|
) = self.encode_prompt_with_trigger_word( |
|
prompt=prompt, |
|
prompt_2=prompt_2, |
|
device=device, |
|
num_id_images=num_id_images, |
|
prompt_embeds=prompt_embeds, |
|
pooled_prompt_embeds=pooled_prompt_embeds, |
|
class_tokens_mask=class_tokens_mask, |
|
nc_flag = nc_flag, |
|
) |
|
|
|
|
|
|
|
tokens_text_only = self.tokenizer.encode(prompt, add_special_tokens=False) |
|
trigger_word_token = self.tokenizer.convert_tokens_to_ids(self.trigger_word) |
|
if not nc_flag: |
|
tokens_text_only.remove(trigger_word_token) |
|
prompt_text_only = self.tokenizer.decode(tokens_text_only, add_special_tokens=False) |
|
print(prompt_text_only) |
|
( |
|
prompt_embeds_text_only, |
|
negative_prompt_embeds, |
|
pooled_prompt_embeds_text_only, |
|
negative_pooled_prompt_embeds, |
|
) = self.encode_prompt( |
|
prompt=prompt_text_only, |
|
prompt_2=prompt_2, |
|
device=device, |
|
num_images_per_prompt=num_images_per_prompt, |
|
do_classifier_free_guidance=True, |
|
negative_prompt=negative_prompt, |
|
negative_prompt_2=negative_prompt_2, |
|
prompt_embeds=prompt_embeds_text_only, |
|
negative_prompt_embeds=negative_prompt_embeds, |
|
pooled_prompt_embeds=pooled_prompt_embeds_text_only, |
|
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, |
|
) |
|
|
|
|
|
dtype = next(self.id_encoder.parameters()).dtype |
|
if not isinstance(input_id_images[0], torch.Tensor): |
|
id_pixel_values = self.id_image_processor(input_id_images, return_tensors="pt").pixel_values |
|
|
|
id_pixel_values = id_pixel_values.unsqueeze(0).to(device=device, dtype=dtype) |
|
|
|
|
|
if not nc_flag: |
|
|
|
prompt_embeds = self.id_encoder(id_pixel_values, prompt_embeds, class_tokens_mask) |
|
|
|
bs_embed, seq_len, _ = prompt_embeds.shape |
|
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) |
|
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) |
|
pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt).view( |
|
bs_embed * num_images_per_prompt, -1 |
|
) |
|
pooled_prompt_embeds_arr.append(pooled_prompt_embeds) |
|
pooled_prompt_embeds = None |
|
|
|
negative_prompt_embeds_arr.append(negative_prompt_embeds) |
|
negative_prompt_embeds = None |
|
negative_pooled_prompt_embeds_arr.append(negative_pooled_prompt_embeds) |
|
negative_pooled_prompt_embeds = None |
|
prompt_embeds_text_only_arr.append(prompt_embeds_text_only) |
|
prompt_embeds_text_only = None |
|
prompt_embeds_arr.append(prompt_embeds) |
|
prompt_embeds = None |
|
pooled_prompt_embeds_text_only_arr.append(pooled_prompt_embeds_text_only) |
|
pooled_prompt_embeds_text_only = None |
|
|
|
self.scheduler.set_timesteps(num_inference_steps, device=device) |
|
timesteps = self.scheduler.timesteps |
|
|
|
negative_prompt_embeds = torch.cat(negative_prompt_embeds_arr ,dim =0) |
|
print(negative_prompt_embeds.shape) |
|
if not nc_flag: |
|
prompt_embeds = torch.cat(prompt_embeds_arr ,dim = 0) |
|
print(prompt_embeds.shape) |
|
pooled_prompt_embeds = torch.cat(pooled_prompt_embeds_arr,dim = 0) |
|
print(pooled_prompt_embeds.shape) |
|
|
|
prompt_embeds_text_only = torch.cat(prompt_embeds_text_only_arr ,dim = 0) |
|
print(prompt_embeds_text_only.shape) |
|
pooled_prompt_embeds_text_only = torch.cat(pooled_prompt_embeds_text_only_arr ,dim = 0) |
|
print(pooled_prompt_embeds_text_only.shape) |
|
|
|
negative_pooled_prompt_embeds = torch.cat(negative_pooled_prompt_embeds_arr ,dim = 0) |
|
print(negative_pooled_prompt_embeds.shape) |
|
|
|
num_channels_latents = self.unet.config.in_channels |
|
latents = self.prepare_latents( |
|
batch_size * num_images_per_prompt, |
|
num_channels_latents, |
|
height, |
|
width, |
|
prompt_embeds.dtype if not nc_flag else prompt_embeds_text_only.dtype, |
|
device, |
|
generator, |
|
latents, |
|
) |
|
|
|
|
|
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) |
|
|
|
|
|
if self.text_encoder_2 is None: |
|
text_encoder_projection_dim = int(pooled_prompt_embeds.shape[-1]) |
|
else: |
|
text_encoder_projection_dim = self.text_encoder_2.config.projection_dim |
|
|
|
add_time_ids = self._get_add_time_ids( |
|
original_size, |
|
crops_coords_top_left, |
|
target_size, |
|
dtype=prompt_embeds.dtype if not nc_flag else prompt_embeds_text_only.dtype, |
|
text_encoder_projection_dim=text_encoder_projection_dim, |
|
) |
|
add_time_ids = torch.cat([add_time_ids, add_time_ids], dim=0) |
|
add_time_ids = add_time_ids.to(device).repeat(batch_size * num_images_per_prompt, 1) |
|
|
|
|
|
print(latents.shape) |
|
print(add_time_ids.shape) |
|
|
|
|
|
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order |
|
with self.progress_bar(total=num_inference_steps) as progress_bar: |
|
for i, t in enumerate(timesteps): |
|
if self.interrupt: |
|
continue |
|
|
|
latent_model_input = ( |
|
torch.cat([latents] * 2) if do_classifier_free_guidance else latents |
|
) |
|
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) |
|
|
|
if i <= start_merge_step or nc_flag: |
|
current_prompt_embeds = torch.cat( |
|
[negative_prompt_embeds, prompt_embeds_text_only], dim=0 |
|
) |
|
add_text_embeds = torch.cat([negative_pooled_prompt_embeds, pooled_prompt_embeds_text_only], dim=0) |
|
else: |
|
current_prompt_embeds = torch.cat( |
|
[negative_prompt_embeds, prompt_embeds], dim=0 |
|
) |
|
add_text_embeds = torch.cat([negative_pooled_prompt_embeds, pooled_prompt_embeds], dim=0) |
|
|
|
added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
noise_pred = self.unet( |
|
latent_model_input, |
|
t, |
|
encoder_hidden_states=current_prompt_embeds, |
|
cross_attention_kwargs=cross_attention_kwargs, |
|
added_cond_kwargs=added_cond_kwargs, |
|
return_dict=False, |
|
)[0] |
|
|
|
|
|
if do_classifier_free_guidance: |
|
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) |
|
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) |
|
|
|
if do_classifier_free_guidance and guidance_rescale > 0.0: |
|
|
|
noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale) |
|
|
|
|
|
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] |
|
|
|
if callback_on_step_end is not None: |
|
callback_kwargs = {} |
|
for k in callback_on_step_end_tensor_inputs: |
|
callback_kwargs[k] = locals()[k] |
|
|
|
ck_outputs = callback_on_step_end(self, i, t, callback_kwargs) |
|
|
|
latents = callback_outputs.pop("latents", latents) |
|
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) |
|
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds) |
|
add_text_embeds = callback_outputs.pop("add_text_embeds", add_text_embeds) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): |
|
progress_bar.update() |
|
if callback is not None and i % callback_steps == 0: |
|
step_idx = i // getattr(self.scheduler, "order", 1) |
|
callback(step_idx, t, latents) |
|
|
|
|
|
if self.vae.dtype == torch.float16 and self.vae.config.force_upcast: |
|
self.upcast_vae() |
|
latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype) |
|
|
|
if not output_type == "latent": |
|
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0] |
|
else: |
|
image = latents |
|
return StableDiffusionXLPipelineOutput(images=image) |
|
|
|
|
|
|
|
|
|
|
|
image = self.image_processor.postprocess(image, output_type=output_type) |
|
|
|
|
|
self.maybe_free_model_hooks() |
|
|
|
if not return_dict: |
|
return (image,) |
|
|
|
return StableDiffusionXLPipelineOutput(images=image) |
|
|