File size: 21,547 Bytes
d6028e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
from calendar import c
from operator import invert
from webbrowser import get
import torch
import random
import torch.nn as nn
import torch.nn.functional as F
import gradio as gr

class SpatialAttnProcessor2_0(torch.nn.Module):
    r"""
    Attention processor for IP-Adapater for PyTorch 2.0.
    Args:
        hidden_size (`int`):
            The hidden size of the attention layer.
        cross_attention_dim (`int`):
            The number of channels in the `encoder_hidden_states`.
        text_context_len (`int`, defaults to 77):
            The context length of the text features.
        scale (`float`, defaults to 1.0):
            the weight scale of image prompt.
    """

    def __init__(self, hidden_size = None, cross_attention_dim=None,id_length = 4,device = "cuda",dtype = torch.float16):
        super().__init__()
        if not hasattr(F, "scaled_dot_product_attention"):
            raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
        self.device = device
        self.dtype = dtype
        self.hidden_size = hidden_size
        self.cross_attention_dim = cross_attention_dim
        self.total_length = id_length + 1
        self.id_length = id_length
        self.id_bank = {}

    def __call__(
        self,
        attn,
        hidden_states,
        encoder_hidden_states=None,
        attention_mask=None,
        temb=None):
        # un_cond_hidden_states, cond_hidden_states = hidden_states.chunk(2)
        # un_cond_hidden_states = self.__call2__(attn, un_cond_hidden_states,encoder_hidden_states,attention_mask,temb)
        # 生成一个0到1之间的随机数
        global total_count,attn_count,cur_step,mask256,mask1024,mask4096
        global sa16, sa32, sa64
        global write
        if write:
            self.id_bank[cur_step] = [hidden_states[:self.id_length], hidden_states[self.id_length:]]
        else:
            encoder_hidden_states = torch.cat(self.id_bank[cur_step][0],hidden_states[:1],self.id_bank[cur_step][1],hidden_states[1:])
        # 判断随机数是否大于0.5
        if cur_step <5:
            hidden_states = self.__call2__(attn, hidden_states,encoder_hidden_states,attention_mask,temb)
        else:   # 256 1024 4096
            random_number = random.random()
            if cur_step <20:
                rand_num = 0.3
            else:
                rand_num = 0.1
            if random_number > rand_num:
                if not write:
                    if hidden_states.shape[1] == 32* 32:
                        attention_mask = mask1024[mask1024.shape[0] // self.total_length * self.id_length:]
                    elif hidden_states.shape[1] ==16*16:
                        attention_mask = mask256[mask256.shape[0] // self.total_length * self.id_length:]
                    else:
                        attention_mask = mask4096[mask4096.shape[0] // self.total_length * self.id_length:]
                else:
                    if hidden_states.shape[1] == 32* 32:
                        attention_mask = mask1024[:mask1024.shape[0] // self.total_length * self.id_length]
                    elif hidden_states.shape[1] ==16*16:
                        attention_mask = mask256[:mask256.shape[0] // self.total_length * self.id_length]
                    else:
                        attention_mask = mask4096[:mask4096.shape[0] // self.total_length * self.id_length]
                hidden_states = self.__call1__(attn, hidden_states,encoder_hidden_states,attention_mask,temb)
            else:
                hidden_states = self.__call2__(attn, hidden_states,None,attention_mask,temb)
        attn_count +=1
        if attn_count == total_count:
            attn_count = 0
            cur_step += 1
            mask256,mask1024,mask4096 = cal_attn_mask(self.total_length,self.id_length,sa16,sa32,sa64, device=self.device, dtype= self.dtype)

        return hidden_states
    def __call1__(
        self,
        attn,
        hidden_states,
        encoder_hidden_states=None,
        attention_mask=None,
        temb=None,
    ):
        residual = hidden_states
        if encoder_hidden_states is not None:
            raise Exception("not implement")
        if attn.spatial_norm is not None:
            hidden_states = attn.spatial_norm(hidden_states, temb)
        input_ndim = hidden_states.ndim

        if input_ndim == 4:
            total_batch_size, channel, height, width = hidden_states.shape
            hidden_states = hidden_states.view(total_batch_size, channel, height * width).transpose(1, 2)
        total_batch_size,nums_token,channel = hidden_states.shape
        img_nums = total_batch_size//2
        hidden_states = hidden_states.view(-1,img_nums,nums_token,channel).reshape(-1,img_nums * nums_token,channel)

        batch_size, sequence_length, _ = hidden_states.shape

        if attn.group_norm is not None:
            hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)

        query = attn.to_q(hidden_states)

        if encoder_hidden_states is None:
            encoder_hidden_states = hidden_states  # B, N, C
        else:
            encoder_hidden_states = encoder_hidden_states.view(-1,self.id_length+1,nums_token,channel).reshape(-1,(self.id_length+1) * nums_token,channel)

        key = attn.to_k(encoder_hidden_states)
        value = attn.to_v(encoder_hidden_states)


        inner_dim = key.shape[-1]
        head_dim = inner_dim // attn.heads

        query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)

        key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
        value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)

        # the output of sdp = (batch, num_heads, seq_len, head_dim)
        # TODO: add support for attn.scale when we move to Torch 2.1
        hidden_states = F.scaled_dot_product_attention(
            query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
        )

        hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
        hidden_states = hidden_states.to(query.dtype)



        # linear proj
        hidden_states = attn.to_out[0](hidden_states)
        # dropout
        hidden_states = attn.to_out[1](hidden_states)

        # if input_ndim == 4:
        #     tile_hidden_states = tile_hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)

        # if attn.residual_connection:
        #     tile_hidden_states = tile_hidden_states + residual

        if input_ndim == 4:
            hidden_states = hidden_states.transpose(-1, -2).reshape(total_batch_size, channel, height, width)
        if attn.residual_connection:
            hidden_states = hidden_states + residual
        hidden_states = hidden_states / attn.rescale_output_factor

        return hidden_states
    def __call2__(
        self,
        attn,
        hidden_states,
        encoder_hidden_states=None,
        attention_mask=None,
        temb=None):
        residual = hidden_states

        if attn.spatial_norm is not None:
            hidden_states = attn.spatial_norm(hidden_states, temb)

        input_ndim = hidden_states.ndim

        if input_ndim == 4:
            batch_size, channel, height, width = hidden_states.shape
            hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)

        batch_size, sequence_length, _ = (
            hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
        )
        attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)

        if attn.group_norm is not None:
            hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)

        query = attn.to_q(hidden_states)

        if encoder_hidden_states is None:
            encoder_hidden_states = hidden_states
        elif attn.norm_cross:
            encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)

        key = attn.to_k(encoder_hidden_states)
        value = attn.to_v(encoder_hidden_states)

        query = attn.head_to_batch_dim(query)
        key = attn.head_to_batch_dim(key)
        value = attn.head_to_batch_dim(value)

        attention_probs = attn.get_attention_scores(query, key, attention_mask)
        hidden_states = torch.bmm(attention_probs, value)
        hidden_states = attn.batch_to_head_dim(hidden_states)

        # linear proj
        hidden_states = attn.to_out[0](hidden_states)
        # dropout
        hidden_states = attn.to_out[1](hidden_states)

        if input_ndim == 4:
            hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)

        if attn.residual_connection:
            hidden_states = hidden_states + residual

        hidden_states = hidden_states / attn.rescale_output_factor

        return hidden_states


def cal_attn_mask(total_length,id_length,sa16,sa32,sa64,device="cuda",dtype= torch.float16):
    bool_matrix256 = torch.rand((1, total_length * 256),device = device,dtype = dtype) < sa16
    bool_matrix1024 = torch.rand((1, total_length * 1024),device = device,dtype = dtype) < sa32
    bool_matrix4096 = torch.rand((1, total_length * 4096),device = device,dtype = dtype) < sa64
    bool_matrix256 = bool_matrix256.repeat(total_length,1)
    bool_matrix1024 = bool_matrix1024.repeat(total_length,1)
    bool_matrix4096 = bool_matrix4096.repeat(total_length,1)
    for i in range(total_length):
        bool_matrix256[i:i+1,id_length*256:] = False
        bool_matrix1024[i:i+1,id_length*1024:] = False
        bool_matrix4096[i:i+1,id_length*4096:] = False
        bool_matrix256[i:i+1,i*256:(i+1)*256] = True
        bool_matrix1024[i:i+1,i*1024:(i+1)*1024] = True
        bool_matrix4096[i:i+1,i*4096:(i+1)*4096] = True
    mask256 = bool_matrix256.unsqueeze(1).repeat(1,256,1).reshape(-1,total_length * 256)
    mask1024 = bool_matrix1024.unsqueeze(1).repeat(1,1024,1).reshape(-1,total_length * 1024)
    mask4096 = bool_matrix4096.unsqueeze(1).repeat(1,4096,1).reshape(-1,total_length * 4096)
    return mask256,mask1024,mask4096

def cal_attn_mask_xl(total_length,id_length,sa32,sa64,height,width,device="cuda",dtype= torch.float16):
    nums_1024 = (height // 32) * (width // 32)
    nums_4096 = (height // 16) * (width // 16)
    bool_matrix1024 = torch.rand((1, total_length * nums_1024),device = device,dtype = dtype) < sa32
    bool_matrix4096 = torch.rand((1, total_length * nums_4096),device = device,dtype = dtype) < sa64
    bool_matrix1024 = bool_matrix1024.repeat(total_length,1)
    bool_matrix4096 = bool_matrix4096.repeat(total_length,1)
    for i in range(total_length):
        bool_matrix1024[i:i+1,id_length*nums_1024:] = False
        bool_matrix4096[i:i+1,id_length*nums_4096:] = False
        bool_matrix1024[i:i+1,i*nums_1024:(i+1)*nums_1024] = True
        bool_matrix4096[i:i+1,i*nums_4096:(i+1)*nums_4096] = True
    mask1024 = bool_matrix1024.unsqueeze(1).repeat(1,nums_1024,1).reshape(-1,total_length * nums_1024)
    mask4096 = bool_matrix4096.unsqueeze(1).repeat(1,nums_4096,1).reshape(-1,total_length * nums_4096)
    return mask1024,mask4096


def cal_attn_indice_xl_effcient_memory(total_length,id_length,sa32,sa64,height,width,device="cuda",dtype= torch.float16):
    nums_1024 = (height // 32) * (width // 32)
    nums_4096 = (height // 16) * (width // 16)
    bool_matrix1024 = torch.rand((total_length,nums_1024),device = device,dtype = dtype) < sa32
    bool_matrix4096 = torch.rand((total_length,nums_4096),device = device,dtype = dtype) < sa64
    # 用nonzero()函数获取所有为True的值的索引
    indices1024 = [torch.nonzero(bool_matrix1024[i], as_tuple=True)[0] for i in range(total_length)]
    indices4096 = [torch.nonzero(bool_matrix4096[i], as_tuple=True)[0] for i in range(total_length)]

    return indices1024,indices4096


class AttnProcessor(nn.Module):
    r"""
    Default processor for performing attention-related computations.
    """
    def __init__(
        self,
        hidden_size=None,
        cross_attention_dim=None,
    ):
        super().__init__()

    def __call__(
        self,
        attn,
        hidden_states,
        encoder_hidden_states=None,
        attention_mask=None,
        temb=None,
    ):
        residual = hidden_states

        if attn.spatial_norm is not None:
            hidden_states = attn.spatial_norm(hidden_states, temb)

        input_ndim = hidden_states.ndim

        if input_ndim == 4:
            batch_size, channel, height, width = hidden_states.shape
            hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)

        batch_size, sequence_length, _ = (
            hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
        )
        attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)

        if attn.group_norm is not None:
            hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)

        query = attn.to_q(hidden_states)

        if encoder_hidden_states is None:
            encoder_hidden_states = hidden_states
        elif attn.norm_cross:
            encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)

        key = attn.to_k(encoder_hidden_states)
        value = attn.to_v(encoder_hidden_states)

        query = attn.head_to_batch_dim(query)
        key = attn.head_to_batch_dim(key)
        value = attn.head_to_batch_dim(value)

        attention_probs = attn.get_attention_scores(query, key, attention_mask)
        hidden_states = torch.bmm(attention_probs, value)
        hidden_states = attn.batch_to_head_dim(hidden_states)

        # linear proj
        hidden_states = attn.to_out[0](hidden_states)
        # dropout
        hidden_states = attn.to_out[1](hidden_states)

        if input_ndim == 4:
            hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)

        if attn.residual_connection:
            hidden_states = hidden_states + residual

        hidden_states = hidden_states / attn.rescale_output_factor

        return hidden_states


class AttnProcessor2_0(torch.nn.Module):
    r"""
    Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0).
    """
    def __init__(
        self,
        hidden_size=None,
        cross_attention_dim=None,
    ):
        super().__init__()
        if not hasattr(F, "scaled_dot_product_attention"):
            raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")

    def __call__(
        self,
        attn,
        hidden_states,
        encoder_hidden_states=None,
        attention_mask=None,
        temb=None,
    ):
        residual = hidden_states

        if attn.spatial_norm is not None:
            hidden_states = attn.spatial_norm(hidden_states, temb)

        input_ndim = hidden_states.ndim

        if input_ndim == 4:
            batch_size, channel, height, width = hidden_states.shape
            hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)

        batch_size, sequence_length, _ = (
            hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
        )

        if attention_mask is not None:
            attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
            # scaled_dot_product_attention expects attention_mask shape to be
            # (batch, heads, source_length, target_length)
            attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])

        if attn.group_norm is not None:
            hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)

        query = attn.to_q(hidden_states)

        if encoder_hidden_states is None:
            encoder_hidden_states = hidden_states
        elif attn.norm_cross:
            encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)

        key = attn.to_k(encoder_hidden_states)
        value = attn.to_v(encoder_hidden_states)

        inner_dim = key.shape[-1]
        head_dim = inner_dim // attn.heads

        query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)

        key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
        value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)

        # the output of sdp = (batch, num_heads, seq_len, head_dim)
        # TODO: add support for attn.scale when we move to Torch 2.1
        hidden_states = F.scaled_dot_product_attention(
            query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
        )

        hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
        hidden_states = hidden_states.to(query.dtype)

        # linear proj
        hidden_states = attn.to_out[0](hidden_states)
        # dropout
        hidden_states = attn.to_out[1](hidden_states)

        if input_ndim == 4:
            hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)

        if attn.residual_connection:
            hidden_states = hidden_states + residual

        hidden_states = hidden_states / attn.rescale_output_factor

        return hidden_states


def is_torch2_available():
    return hasattr(F, "scaled_dot_product_attention")


# 将列表转换为字典的函数
def character_to_dict(general_prompt):
    character_dict = {}    
    generate_prompt_arr = general_prompt.splitlines()
    character_index_dict = {}
    invert_character_index_dict = {}
    character_list = []
    for ind,string in enumerate(generate_prompt_arr):
        # 分割字符串寻找key和value
        start = string.find('[')
        end = string.find(']')
        if start != -1 and end != -1:
            key = string[start:end+1]
            value = string[end+1:]
            if "#" in value:
                value =  value.rpartition('#')[0] 
            if key in character_dict:
                raise gr.Error("duplicate character descirption: " + key)
            character_dict[key] = value
            character_list.append(key)

        
    return character_dict,character_list 

def get_id_prompt_index(character_dict,id_prompts):
    replace_id_prompts = []
    character_index_dict = {}
    invert_character_index_dict = {}
    for ind,id_prompt in enumerate(id_prompts):
                for key in character_dict.keys():
                    if key in id_prompt:
                        if key not in character_index_dict:
                            character_index_dict[key] = []
                        character_index_dict[key].append(ind)
                        invert_character_index_dict[ind] = key
                        replace_id_prompts.append(id_prompt.replace(key,character_dict[key]))

    return character_index_dict,invert_character_index_dict,replace_id_prompts

def get_cur_id_list(real_prompt,character_dict,character_index_dict):
    list_arr = []
    for keys in character_index_dict.keys():
        if keys in real_prompt:
            list_arr = list_arr +  character_index_dict[keys]
            real_prompt = real_prompt.replace(keys,character_dict[keys])
    return list_arr,real_prompt

def process_original_prompt(character_dict,prompts,id_length):
    replace_prompts = []
    character_index_dict = {}
    invert_character_index_dict = {}
    for ind,prompt in enumerate(prompts):
                for key in character_dict.keys():
                    if key in prompt:
                        if key not in character_index_dict:
                            character_index_dict[key] = []
                        character_index_dict[key].append(ind)
                        if ind not in invert_character_index_dict:
                            invert_character_index_dict[ind] = []
                        invert_character_index_dict[ind].append(key)
                cur_prompt = prompt
                if ind in invert_character_index_dict:
                    for key in invert_character_index_dict[ind]:
                        cur_prompt = cur_prompt.replace(key,character_dict[key])
                replace_prompts.append(cur_prompt)
    ref_index_dict = {}
    ref_totals = []
    print(character_index_dict)
    for character_key in character_index_dict.keys():
        if character_key not in character_index_dict:
            raise gr.Error("{} not have prompt description, please remove it".format(character_key))
        index_list = character_index_dict[character_key]
        index_list = [index for index in index_list if len(invert_character_index_dict[index]) == 1]
        if len(index_list) < id_length:
            raise gr.Error(f"{character_key} not have enough prompt description, need no less than {id_length}, but you give {len(index_list)}")
        ref_index_dict[character_key] = index_list[:id_length]
        ref_totals = ref_totals + index_list[:id_length]
    return character_index_dict,invert_character_index_dict,replace_prompts,ref_index_dict,ref_totals


def get_ref_character(real_prompt,character_dict):
    list_arr = []
    for keys in character_dict.keys():
        if keys in real_prompt:
            list_arr = list_arr + [keys]
    return list_arr