File size: 52,647 Bytes
d6028e3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
from this import d
import gradio as gr
import numpy as np
import torch
import gc
import copy
import os
import random
import datetime
from PIL import ImageFont
from utils.gradio_utils import (
    character_to_dict,
    process_original_prompt,
    get_ref_character,
    cal_attn_mask_xl,
    cal_attn_indice_xl_effcient_memory,
    is_torch2_available,
)

if is_torch2_available():
    from utils.gradio_utils import AttnProcessor2_0 as AttnProcessor
else:
    from utils.gradio_utils import AttnProcessor
from huggingface_hub import hf_hub_download
from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl import (
    StableDiffusionXLPipeline,
)
from diffusers.schedulers.scheduling_ddim import DDIMScheduler
import torch.nn.functional as F
from diffusers.utils.loading_utils import load_image
from utils.utils import get_comic
from utils.style_template import styles
from utils.load_models_utils import get_models_dict, load_models

STYLE_NAMES = list(styles.keys())
DEFAULT_STYLE_NAME = "Japanese Anime"
global models_dict

models_dict = get_models_dict()

# Automatically select the device
device = (
    "cuda"
    if torch.cuda.is_available()
    else "mps" if torch.backends.mps.is_available() else "cpu"
)
print(f"@@device:{device}")


# check if the file exists locally at a specified path before downloading it.
# if the file doesn't exist, it uses `hf_hub_download` to download the file
# and optionally move it to a specific directory. If the file already
# exists, it simply uses the local path.
local_dir = "data/"
photomaker_local_path = f"{local_dir}photomaker-v1.bin"
if not os.path.exists(photomaker_local_path):
    photomaker_path = hf_hub_download(
        repo_id="TencentARC/PhotoMaker",
        filename="photomaker-v1.bin",
        repo_type="model",
        local_dir=local_dir,
    )
else:
    photomaker_path = photomaker_local_path

MAX_SEED = np.iinfo(np.int32).max


def setup_seed(seed):
    torch.manual_seed(seed)
    if device == "cuda":
        torch.cuda.manual_seed_all(seed)
    np.random.seed(seed)
    random.seed(seed)
    torch.backends.cudnn.deterministic = True


def set_text_unfinished():
    return gr.update(
        visible=True,
        value="<h3>(Not Finished) Generating ···  The intermediate results will be shown.</h3>",
    )


def set_text_finished():
    return gr.update(visible=True, value="<h3>Generation Finished</h3>")


#################################################
def get_image_path_list(folder_name):
    image_basename_list = os.listdir(folder_name)
    image_path_list = sorted(
        [os.path.join(folder_name, basename) for basename in image_basename_list]
    )
    return image_path_list


#################################################
class SpatialAttnProcessor2_0(torch.nn.Module):
    r"""
    Attention processor for IP-Adapater for PyTorch 2.0.
    Args:
        hidden_size (`int`):
            The hidden size of the attention layer.
        cross_attention_dim (`int`):
            The number of channels in the `encoder_hidden_states`.
        text_context_len (`int`, defaults to 77):
            The context length of the text features.
        scale (`float`, defaults to 1.0):
            the weight scale of image prompt.
    """

    def __init__(
        self,
        hidden_size=None,
        cross_attention_dim=None,
        id_length=4,
        device=device,
        dtype=torch.float16,
    ):
        super().__init__()
        if not hasattr(F, "scaled_dot_product_attention"):
            raise ImportError(
                "AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0."
            )
        self.device = device
        self.dtype = dtype
        self.hidden_size = hidden_size
        self.cross_attention_dim = cross_attention_dim
        self.total_length = id_length + 1
        self.id_length = id_length
        self.id_bank = {}

    def __call__(
        self,
        attn,
        hidden_states,
        encoder_hidden_states=None,
        attention_mask=None,
        temb=None,
    ):
        # un_cond_hidden_states, cond_hidden_states = hidden_states.chunk(2)
        # un_cond_hidden_states = self.__call2__(attn, un_cond_hidden_states,encoder_hidden_states,attention_mask,temb)
        # 生成一个0到1之间的随机数
        global total_count, attn_count, cur_step, indices1024, indices4096
        global sa32, sa64
        global write
        global height, width
        global character_dict, character_index_dict, invert_character_index_dict, cur_character, ref_indexs_dict, ref_totals, cur_character
        if attn_count == 0 and cur_step == 0:
            indices1024, indices4096 = cal_attn_indice_xl_effcient_memory(
                self.total_length,
                self.id_length,
                sa32,
                sa64,
                height,
                width,
                device=self.device,
                dtype=self.dtype,
            )
        if write:
            assert len(cur_character) == 1
            if hidden_states.shape[1] == (height // 32) * (width // 32):
                indices = indices1024
            else:
                indices = indices4096
            # print(f"white:{cur_step}")
            total_batch_size, nums_token, channel = hidden_states.shape
            img_nums = total_batch_size // 2
            hidden_states = hidden_states.reshape(-1, img_nums, nums_token, channel)
            # print(img_nums,len(indices),hidden_states.shape,self.total_length)
            if cur_character[0] not in self.id_bank:
                self.id_bank[cur_character[0]] = {}
            self.id_bank[cur_character[0]][cur_step] = [
                hidden_states[:, img_ind, indices[img_ind], :]
                .reshape(2, -1, channel)
                .clone()
                for img_ind in range(img_nums)
            ]
            hidden_states = hidden_states.reshape(-1, nums_token, channel)
            # self.id_bank[cur_step] = [hidden_states[:self.id_length].clone(), hidden_states[self.id_length:].clone()]
        else:
            # encoder_hidden_states = torch.cat((self.id_bank[cur_step][0].to(self.device),self.id_bank[cur_step][1].to(self.device)))
            # TODO: ADD Multipersion Control
            encoder_arr = []
            for character in cur_character:
                encoder_arr = encoder_arr + [
                    tensor.to(self.device)
                    for tensor in self.id_bank[character][cur_step]
                ]
        # 判断随机数是否大于0.5
        if cur_step < 1:
            hidden_states = self.__call2__(
                attn, hidden_states, None, attention_mask, temb
            )
        else:  # 256 1024 4096
            random_number = random.random()
            if cur_step < 20:
                rand_num = 0.3
            else:
                rand_num = 0.1
            # print(f"hidden state shape {hidden_states.shape[1]}")
            if random_number > rand_num:
                if hidden_states.shape[1] == (height // 32) * (width // 32):
                    indices = indices1024
                else:
                    indices = indices4096
                # print("before attention",hidden_states.shape,attention_mask.shape,encoder_hidden_states.shape if encoder_hidden_states is not None else "None")
                if write:
                    total_batch_size, nums_token, channel = hidden_states.shape
                    img_nums = total_batch_size // 2
                    hidden_states = hidden_states.reshape(
                        -1, img_nums, nums_token, channel
                    )
                    encoder_arr = [
                        hidden_states[:, img_ind, indices[img_ind], :].reshape(
                            2, -1, channel
                        )
                        for img_ind in range(img_nums)
                    ]
                    for img_ind in range(img_nums):
                        # print(img_nums)
                        # assert img_nums != 1
                        img_ind_list = [i for i in range(img_nums)]
                        # print(img_ind_list,img_ind)
                        img_ind_list.remove(img_ind)
                        # print(img_ind,invert_character_index_dict[img_ind])
                        # print(character_index_dict[invert_character_index_dict[img_ind]])
                        # print(img_ind_list)
                        # print(img_ind,img_ind_list)
                        encoder_hidden_states_tmp = torch.cat(
                            [encoder_arr[img_ind] for img_ind in img_ind_list]
                            + [hidden_states[:, img_ind, :, :]],
                            dim=1,
                        )

                        hidden_states[:, img_ind, :, :] = self.__call2__(
                            attn,
                            hidden_states[:, img_ind, :, :],
                            encoder_hidden_states_tmp,
                            None,
                            temb,
                        )
                else:
                    _, nums_token, channel = hidden_states.shape
                    # img_nums = total_batch_size // 2
                    # encoder_hidden_states = encoder_hidden_states.reshape(-1,img_nums,nums_token,channel)
                    hidden_states = hidden_states.reshape(2, -1, nums_token, channel)
                    # print(len(indices))
                    # encoder_arr = [encoder_hidden_states[:,img_ind,indices[img_ind],:].reshape(2,-1,channel) for img_ind in range(img_nums)]
                    encoder_hidden_states_tmp = torch.cat(
                        encoder_arr + [hidden_states[:, 0, :, :]], dim=1
                    )
                    # print(len(encoder_arr),encoder_hidden_states_tmp.shape)
                    hidden_states[:, 0, :, :] = self.__call2__(
                        attn,
                        hidden_states[:, 0, :, :],
                        encoder_hidden_states_tmp,
                        None,
                        temb,
                    )
                hidden_states = hidden_states.reshape(-1, nums_token, channel)
            else:
                hidden_states = self.__call2__(
                    attn, hidden_states, None, attention_mask, temb
                )
        attn_count += 1
        if attn_count == total_count:
            attn_count = 0
            cur_step += 1
            indices1024, indices4096 = cal_attn_indice_xl_effcient_memory(
                self.total_length,
                self.id_length,
                sa32,
                sa64,
                height,
                width,
                device=self.device,
                dtype=self.dtype,
            )

        return hidden_states

    def __call2__(
        self,
        attn,
        hidden_states,
        encoder_hidden_states=None,
        attention_mask=None,
        temb=None,
    ):
        residual = hidden_states

        if attn.spatial_norm is not None:
            hidden_states = attn.spatial_norm(hidden_states, temb)

        input_ndim = hidden_states.ndim

        if input_ndim == 4:
            batch_size, channel, height, width = hidden_states.shape
            hidden_states = hidden_states.view(
                batch_size, channel, height * width
            ).transpose(1, 2)

        batch_size, sequence_length, channel = hidden_states.shape
        # print(hidden_states.shape)
        if attention_mask is not None:
            attention_mask = attn.prepare_attention_mask(
                attention_mask, sequence_length, batch_size
            )
            # scaled_dot_product_attention expects attention_mask shape to be
            # (batch, heads, source_length, target_length)
            attention_mask = attention_mask.view(
                batch_size, attn.heads, -1, attention_mask.shape[-1]
            )

        if attn.group_norm is not None:
            hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(
                1, 2
            )

        query = attn.to_q(hidden_states)

        if encoder_hidden_states is None:
            encoder_hidden_states = hidden_states  # B, N, C
        # else:
        #     encoder_hidden_states = encoder_hidden_states.view(-1,self.id_length+1,sequence_length,channel).reshape(-1,(self.id_length+1) * sequence_length,channel)

        key = attn.to_k(encoder_hidden_states)
        value = attn.to_v(encoder_hidden_states)

        inner_dim = key.shape[-1]
        head_dim = inner_dim // attn.heads

        query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)

        key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
        value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)

        # the output of sdp = (batch, num_heads, seq_len, head_dim)
        # TODO: add support for attn.scale when we move to Torch 2.1
        hidden_states = F.scaled_dot_product_attention(
            query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
        )

        hidden_states = hidden_states.transpose(1, 2).reshape(
            batch_size, -1, attn.heads * head_dim
        )
        hidden_states = hidden_states.to(query.dtype)

        # linear proj
        hidden_states = attn.to_out[0](hidden_states)
        # dropout
        hidden_states = attn.to_out[1](hidden_states)

        if input_ndim == 4:
            hidden_states = hidden_states.transpose(-1, -2).reshape(
                batch_size, channel, height, width
            )

        if attn.residual_connection:
            hidden_states = hidden_states + residual

        hidden_states = hidden_states / attn.rescale_output_factor

        return hidden_states


def set_attention_processor(unet, id_length, is_ipadapter=False):
    global attn_procs
    attn_procs = {}
    for name in unet.attn_processors.keys():
        cross_attention_dim = (
            None
            if name.endswith("attn1.processor")
            else unet.config.cross_attention_dim
        )
        if name.startswith("mid_block"):
            hidden_size = unet.config.block_out_channels[-1]
        elif name.startswith("up_blocks"):
            block_id = int(name[len("up_blocks.")])
            hidden_size = list(reversed(unet.config.block_out_channels))[block_id]
        elif name.startswith("down_blocks"):
            block_id = int(name[len("down_blocks.")])
            hidden_size = unet.config.block_out_channels[block_id]
        if cross_attention_dim is None:
            if name.startswith("up_blocks"):
                attn_procs[name] = SpatialAttnProcessor2_0(id_length=id_length)
            else:
                attn_procs[name] = AttnProcessor()
        else:
            if is_ipadapter:
                attn_procs[name] = IPAttnProcessor2_0(
                    hidden_size=hidden_size,
                    cross_attention_dim=cross_attention_dim,
                    scale=1,
                    num_tokens=4,
                ).to(unet.device, dtype=torch.float16)
            else:
                attn_procs[name] = AttnProcessor()

    unet.set_attn_processor(copy.deepcopy(attn_procs))


#################################################
#################################################
canvas_html = "<div id='canvas-root' style='max-width:400px; margin: 0 auto'></div>"
load_js = """
async () => {
const url = "https://huggingface.co./datasets/radames/gradio-components/raw/main/sketch-canvas.js"
fetch(url)
  .then(res => res.text())
  .then(text => {
    const script = document.createElement('script');
    script.type = "module"
    script.src = URL.createObjectURL(new Blob([text], { type: 'application/javascript' }));
    document.head.appendChild(script);
  });
}
"""

get_js_colors = """
async (canvasData) => {
  const canvasEl = document.getElementById("canvas-root");
  return [canvasEl._data]
}
"""

css = """
#color-bg{display:flex;justify-content: center;align-items: center;}
.color-bg-item{width: 100%; height: 32px}
#main_button{width:100%}
<style>
"""


def save_single_character_weights(unet, character, description, filepath):
    """
    保存 attention_processor 类中的 id_bank GPU Tensor 列表到指定文件中。
    参数:
    - model: 包含 attention_processor 类实例的模型。
    - filepath: 权重要保存到的文件路径。
    """
    weights_to_save = {}
    weights_to_save["description"] = description
    weights_to_save["character"] = character
    for attn_name, attn_processor in unet.attn_processors.items():
        if isinstance(attn_processor, SpatialAttnProcessor2_0):
            # 将每个 Tensor 转到 CPU 并转为列表,以确保它可以被序列化
            weights_to_save[attn_name] = {}
            for step_key in attn_processor.id_bank[character].keys():
                weights_to_save[attn_name][step_key] = [
                    tensor.cpu()
                    for tensor in attn_processor.id_bank[character][step_key]
                ]
    # 使用torch.save保存权重
    torch.save(weights_to_save, filepath)


def load_single_character_weights(unet, filepath):
    """
    从指定文件中加载权重到 attention_processor 类的 id_bank 中。
    参数:
    - model: 包含 attention_processor 类实例的模型。
    - filepath: 权重文件的路径。
    """
    # 使用torch.load来读取权重
    weights_to_load = torch.load(filepath, map_location=torch.device("cpu"))
    character = weights_to_load["character"]
    description = weights_to_load["description"]
    for attn_name, attn_processor in unet.attn_processors.items():
        if isinstance(attn_processor, SpatialAttnProcessor2_0):
            # 转移权重到GPU(如果GPU可用的话)并赋值给id_bank
            attn_processor.id_bank[character] = {}
            for step_key in weights_to_load[attn_name].keys():
                attn_processor.id_bank[character][step_key] = [
                    tensor.to(unet.device)
                    for tensor in weights_to_load[attn_name][step_key]
                ]


def save_results(unet, img_list):

    timestamp = datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
    folder_name = f"results/{timestamp}"
    weight_folder_name = f"{folder_name}/weights"
    # 创建文件夹
    if not os.path.exists(folder_name):
        os.makedirs(folder_name)
        os.makedirs(weight_folder_name)

    for idx, img in enumerate(img_list):
        file_path = os.path.join(folder_name, f"image_{idx}.png")  # 图片文件名
        img.save(file_path)
    global character_dict
    # for char in character_dict:
    #     description = character_dict[char]
    #     save_single_character_weights(unet,char,description,os.path.join(weight_folder_name, f'{char}.pt'))


#################################################
title = r"""
<h1 align="center">StoryDiffusion: Consistent Self-Attention for Long-Range Image and Video Generation</h1>
"""

description = r"""
<b>Official 🤗 Gradio demo</b> for <a href='https://github.com/HVision-NKU/StoryDiffusion' target='_blank'><b>StoryDiffusion: Consistent Self-Attention for Long-Range Image and Video Generation</b></a>.<br>
❗️❗️❗️[<b>Important</b>] Personalization steps:<br>
1️⃣ Enter a Textual Description for Character, if you add the Ref-Image, making sure to <b>follow the class word</b> you want to customize with the <b>trigger word</b>: `img`, such as: `man img` or `woman img` or `girl img`.<br>
2️⃣ Enter the prompt array, each line corrsponds to one generated image.<br>
3️⃣ Choose your preferred style template.<br>
4️⃣ Click the <b>Submit</b> button to start customizing.
"""

article = r"""

If StoryDiffusion is helpful, please help to ⭐ the <a href='https://github.com/HVision-NKU/StoryDiffusion' target='_blank'>Github Repo</a>. Thanks! 
[![GitHub Stars](https://img.shields.io/github/stars/HVision-NKU/StoryDiffusion?style=social)](https://github.com/HVision-NKU/StoryDiffusion)
---
📝 **Citation**
<br>
If our work is useful for your research, please consider citing:

```bibtex
@article{Zhou2024storydiffusion,
  title={StoryDiffusion: Consistent Self-Attention for Long-Range Image and Video Generation},
  author={Zhou, Yupeng and Zhou, Daquan and Cheng, Ming-Ming and Feng, Jiashi and Hou, Qibin},
  year={2024}
}
```
📋 **License**
<br>
Apache-2.0 LICENSE. 

📧 **Contact**
<br>
If you have any questions, please feel free to reach me out at <b>[email protected]</b>.
"""
version = r"""
<h3 align="center">StoryDiffusion Version 0.02 (test version)</h3>

<h5 >1. Support image ref image. (Cartoon Ref image is not support now)</h5>
<h5 >2. Support Typesetting Style and Captioning.(By default, the prompt is used as the caption for each image. If you need to change the caption, add a # at the end of each line. Only the part after the # will be added as a caption to the image.)</h5>
<h5 >3. [NC]symbol (The [NC] symbol is used as a flag to indicate that no characters should be present in the generated scene images. If you want do that, prepend the "[NC]" at the beginning of the line. For example, to generate a scene of falling leaves without any character, write: "[NC] The leaves are falling.")</h5>
<h5 align="center">Tips: </h4>
"""
#################################################
global attn_count, total_count, id_length, total_length, cur_step, cur_model_type
global write
global sa32, sa64
global height, width
attn_count = 0
total_count = 0
cur_step = 0
id_length = 4
total_length = 5
cur_model_type = ""
global attn_procs, unet
attn_procs = {}
###
write = False
###
sa32 = 0.5
sa64 = 0.5
height = 768
width = 768
###
global pipe
global sd_model_path
pipe = None
sd_model_path = models_dict["Unstable"]["path"]  # "SG161222/RealVisXL_V4.0"
single_files = models_dict["Unstable"]["single_files"]
### LOAD Stable Diffusion Pipeline
if single_files:
    pipe = StableDiffusionXLPipeline.from_single_file(
        sd_model_path, torch_dtype=torch.float16
    )
else:
    pipe = StableDiffusionXLPipeline.from_pretrained(
        sd_model_path, torch_dtype=torch.float16, use_safetensors=False
    )
pipe = pipe.to(device)
pipe.enable_freeu(s1=0.6, s2=0.4, b1=1.1, b2=1.2)
# pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
pipe.scheduler.set_timesteps(50)
pipe.enable_vae_slicing()
if device != "mps":
    pipe.enable_model_cpu_offload()
unet = pipe.unet
cur_model_type = "Unstable" + "-" + "original"
### Insert PairedAttention
for name in unet.attn_processors.keys():
    cross_attention_dim = (
        None if name.endswith("attn1.processor") else unet.config.cross_attention_dim
    )
    if name.startswith("mid_block"):
        hidden_size = unet.config.block_out_channels[-1]
    elif name.startswith("up_blocks"):
        block_id = int(name[len("up_blocks.")])
        hidden_size = list(reversed(unet.config.block_out_channels))[block_id]
    elif name.startswith("down_blocks"):
        block_id = int(name[len("down_blocks.")])
        hidden_size = unet.config.block_out_channels[block_id]
    if cross_attention_dim is None and (name.startswith("up_blocks")):
        attn_procs[name] = SpatialAttnProcessor2_0(id_length=id_length)
        total_count += 1
    else:
        attn_procs[name] = AttnProcessor()
print("successsfully load paired self-attention")
print(f"number of the processor : {total_count}")
unet.set_attn_processor(copy.deepcopy(attn_procs))
global mask1024, mask4096
mask1024, mask4096 = cal_attn_mask_xl(
    total_length,
    id_length,
    sa32,
    sa64,
    height,
    width,
    device=device,
    dtype=torch.float16,
)

######### Gradio Fuction #############


def swap_to_gallery(images):
    return (
        gr.update(value=images, visible=True),
        gr.update(visible=True),
        gr.update(visible=False),
    )


def upload_example_to_gallery(images, prompt, style, negative_prompt):
    return (
        gr.update(value=images, visible=True),
        gr.update(visible=True),
        gr.update(visible=False),
    )


def remove_back_to_files():
    return gr.update(visible=False), gr.update(visible=False), gr.update(visible=True)


def remove_tips():
    return gr.update(visible=False)


def apply_style_positive(style_name: str, positive: str):
    p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME])
    return p.replace("{prompt}", positive)


def apply_style(style_name: str, positives: list, negative: str = ""):
    p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME])
    return [
        p.replace("{prompt}", positive) for positive in positives
    ], n + " " + negative


def change_visiale_by_model_type(_model_type):
    if _model_type == "Only Using Textual Description":
        return (
            gr.update(visible=False),
            gr.update(visible=False),
            gr.update(visible=False),
        )
    elif _model_type == "Using Ref Images":
        return (
            gr.update(visible=True),
            gr.update(visible=True),
            gr.update(visible=False),
        )
    else:
        raise ValueError("Invalid model type", _model_type)


def load_character_files(character_files: str):
    if character_files == "":
        raise gr.Error("Please set a character file!")
    character_files_arr = character_files.splitlines()
    primarytext = []
    for character_file_name in character_files_arr:
        character_file = torch.load(
            character_file_name, map_location=torch.device("cpu")
        )
        primarytext.append(character_file["character"] + character_file["description"])
    return array2string(primarytext)


def load_character_files_on_running(unet, character_files: str):
    if character_files == "":
        return False
    character_files_arr = character_files.splitlines()
    for character_file in character_files_arr:
        load_single_character_weights(unet, character_file)
    return True


######### Image Generation ##############
def process_generation(
    _sd_type,
    _model_type,
    _upload_images,
    _num_steps,
    style_name,
    _Ip_Adapter_Strength,
    _style_strength_ratio,
    guidance_scale,
    seed_,
    sa32_,
    sa64_,
    id_length_,
    general_prompt,
    negative_prompt,
    prompt_array,
    G_height,
    G_width,
    _comic_type,
    font_choice,
    _char_files,
):  # Corrected font_choice usage
    if len(general_prompt.splitlines()) >= 3:
        raise gr.Error(
            "Support for more than three characters is temporarily unavailable due to VRAM limitations, but this issue will be resolved soon."
        )
    _model_type = "Photomaker" if _model_type == "Using Ref Images" else "original"
    if _model_type == "Photomaker" and "img" not in general_prompt:
        raise gr.Error(
            'Please add the triger word " img "  behind the class word you want to customize, such as: man img or woman img'
        )
    if _upload_images is None and _model_type != "original":
        raise gr.Error(f"Cannot find any input face image!")
    global sa32, sa64, id_length, total_length, attn_procs, unet, cur_model_type
    global write
    global cur_step, attn_count
    global height, width
    height = G_height
    width = G_width
    global pipe
    global sd_model_path, models_dict
    sd_model_path = models_dict[_sd_type]
    use_safe_tensor = True
    for attn_processor in pipe.unet.attn_processors.values():
        if isinstance(attn_processor, SpatialAttnProcessor2_0):
            for values in attn_processor.id_bank.values():
                del values
            attn_processor.id_bank = {}
            attn_processor.id_length = id_length
            attn_processor.total_length = id_length + 1
    gc.collect()
    if cur_model_type != _sd_type + "-" + _model_type:
        # apply the style template
        ##### load pipe
        del pipe
        gc.collect()
        if device == "cuda":
            torch.cuda.empty_cache()
        model_info = models_dict[_sd_type]
        model_info["model_type"] = _model_type
        pipe = load_models(model_info, device=device, photomaker_path=photomaker_path)
        set_attention_processor(pipe.unet, id_length_, is_ipadapter=False)
        ##### ########################
        pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
        pipe.enable_freeu(s1=0.6, s2=0.4, b1=1.1, b2=1.2)
        cur_model_type = _sd_type + "-" + _model_type
        pipe.enable_vae_slicing()
        if device != "mps":
            pipe.enable_model_cpu_offload()
    else:
        unet = pipe.unet
        # unet.set_attn_processor(copy.deepcopy(attn_procs))

    load_chars = load_character_files_on_running(unet, character_files=_char_files)

    prompts = prompt_array.splitlines()
    global character_dict, character_index_dict, invert_character_index_dict, ref_indexs_dict, ref_totals
    character_dict, character_list = character_to_dict(general_prompt)

    start_merge_step = int(float(_style_strength_ratio) / 100 * _num_steps)
    if start_merge_step > 30:
        start_merge_step = 30
    print(f"start_merge_step:{start_merge_step}")
    generator = torch.Generator(device=device).manual_seed(seed_)
    sa32, sa64 = sa32_, sa64_
    id_length = id_length_
    clipped_prompts = prompts[:]
    nc_indexs = []
    for ind, prompt in enumerate(clipped_prompts):
        if "[NC]" in prompt:
            nc_indexs.append(ind)
            if ind < id_length:
                raise gr.Error(
                    f"The first {id_length} row is id prompts, cannot use [NC]!"
                )
    prompts = [
        prompt if "[NC]" not in prompt else prompt.replace("[NC]", "")
        for prompt in clipped_prompts
    ]

    prompts = [
        prompt.rpartition("#")[0] if "#" in prompt else prompt for prompt in prompts
    ]
    print(prompts)
    # id_prompts = prompts[:id_length]
    (
        character_index_dict,
        invert_character_index_dict,
        replace_prompts,
        ref_indexs_dict,
        ref_totals,
    ) = process_original_prompt(character_dict, prompts.copy(), id_length)
    if _model_type != "original":
        input_id_images_dict = {}
        if len(_upload_images) != len(character_dict.keys()):
            raise gr.Error(
                f"You upload images({len(_upload_images)}) is not equal to the number of characters({len(character_dict.keys())})!"
            )
        for ind, img in enumerate(_upload_images):
            input_id_images_dict[character_list[ind]] = [load_image(img)]
    print(character_dict)
    print(character_index_dict)
    print(invert_character_index_dict)
    # real_prompts = prompts[id_length:]
    if device == "cuda":
        torch.cuda.empty_cache()
    write = True
    cur_step = 0

    attn_count = 0
    # id_prompts, negative_prompt = apply_style(style_name, id_prompts, negative_prompt)
    # print(id_prompts)
    setup_seed(seed_)
    total_results = []
    id_images = []
    results_dict = {}
    global cur_character
    if not load_chars:
        for character_key in character_dict.keys():
            cur_character = [character_key]
            ref_indexs = ref_indexs_dict[character_key]
            print(character_key, ref_indexs)
            current_prompts = [replace_prompts[ref_ind] for ref_ind in ref_indexs]
            print(current_prompts)
            setup_seed(seed_)
            generator = torch.Generator(device=device).manual_seed(seed_)
            cur_step = 0
            cur_positive_prompts, negative_prompt = apply_style(
                style_name, current_prompts, negative_prompt
            )
            if _model_type == "original":
                id_images = pipe(
                    cur_positive_prompts,
                    num_inference_steps=_num_steps,
                    guidance_scale=guidance_scale,
                    height=height,
                    width=width,
                    negative_prompt=negative_prompt,
                    generator=generator,
                ).images
            elif _model_type == "Photomaker":
                id_images = pipe(
                    cur_positive_prompts,
                    input_id_images=input_id_images_dict[character_key],
                    num_inference_steps=_num_steps,
                    guidance_scale=guidance_scale,
                    start_merge_step=start_merge_step,
                    height=height,
                    width=width,
                    negative_prompt=negative_prompt,
                    generator=generator,
                ).images
            else:
                raise NotImplementedError(
                    "You should choice between original and Photomaker!",
                    f"But you choice {_model_type}",
                )

            # total_results = id_images + total_results
            # yield total_results
            print(id_images)
            for ind, img in enumerate(id_images):
                print(ref_indexs[ind])
                results_dict[ref_indexs[ind]] = img
            # real_images = []
            yield [results_dict[ind] for ind in results_dict.keys()]
    write = False
    if not load_chars:
        real_prompts_inds = [
            ind for ind in range(len(prompts)) if ind not in ref_totals
        ]
    else:
        real_prompts_inds = [ind for ind in range(len(prompts))]
    print(real_prompts_inds)

    for real_prompts_ind in real_prompts_inds:
        real_prompt = replace_prompts[real_prompts_ind]
        cur_character = get_ref_character(prompts[real_prompts_ind], character_dict)
        print(cur_character, real_prompt)
        setup_seed(seed_)
        if len(cur_character) > 1 and _model_type == "Photomaker":
            raise gr.Error(
                "Temporarily Not Support Multiple character in Ref Image Mode!"
            )
        generator = torch.Generator(device=device).manual_seed(seed_)
        cur_step = 0
        real_prompt = apply_style_positive(style_name, real_prompt)
        if _model_type == "original":
            results_dict[real_prompts_ind] = pipe(
                real_prompt,
                num_inference_steps=_num_steps,
                guidance_scale=guidance_scale,
                height=height,
                width=width,
                negative_prompt=negative_prompt,
                generator=generator,
            ).images[0]
        elif _model_type == "Photomaker":
            results_dict[real_prompts_ind] = pipe(
                real_prompt,
                input_id_images=(
                    input_id_images_dict[cur_character[0]]
                    if real_prompts_ind not in nc_indexs
                    else input_id_images_dict[character_list[0]]
                ),
                num_inference_steps=_num_steps,
                guidance_scale=guidance_scale,
                start_merge_step=start_merge_step,
                height=height,
                width=width,
                negative_prompt=negative_prompt,
                generator=generator,
                nc_flag=True if real_prompts_ind in nc_indexs else False,
            ).images[0]
        else:
            raise NotImplementedError(
                "You should choice between original and Photomaker!",
                f"But you choice {_model_type}",
            )
        yield [results_dict[ind] for ind in results_dict.keys()]
    total_results = [results_dict[ind] for ind in range(len(prompts))]
    if _comic_type != "No typesetting (default)":
        captions = prompt_array.splitlines()
        captions = [caption.replace("[NC]", "") for caption in captions]
        captions = [
            caption.split("#")[-1] if "#" in caption else caption
            for caption in captions
        ]
        font_path = os.path.join("fonts", font_choice)
        font = ImageFont.truetype(font_path, int(45))
        total_results = (
            get_comic(total_results, _comic_type, captions=captions, font=font)
            + total_results
        )
    save_results(pipe.unet, total_results)

    yield total_results


def array2string(arr):
    stringtmp = ""
    for i, part in enumerate(arr):
        if i != len(arr) - 1:
            stringtmp += part + "\n"
        else:
            stringtmp += part

    return stringtmp


#################################################
#################################################
### define the interface

with gr.Blocks(css=css) as demo:
    binary_matrixes = gr.State([])
    color_layout = gr.State([])

    # gr.Markdown(logo)
    gr.Markdown(title)
    gr.Markdown(description)

    with gr.Row():
        with gr.Group(elem_id="main-image"):

            prompts = []
            colors = []

            with gr.Column(visible=True) as gen_prompt_vis:
                sd_type = gr.Dropdown(
                    choices=list(models_dict.keys()),
                    value="Unstable",
                    label="sd_type",
                    info="Select pretrained model",
                )
                model_type = gr.Radio(
                    ["Only Using Textual Description", "Using Ref Images"],
                    label="model_type",
                    value="Only Using Textual Description",
                    info="Control type of the Character",
                )
                with gr.Group(visible=False) as control_image_input:
                    files = gr.Files(
                        label="Drag (Select) 1 or more photos of your face",
                        file_types=["image"],
                    )
                    uploaded_files = gr.Gallery(
                        label="Your images",
                        visible=False,
                        columns=5,
                        rows=1,
                        height=200,
                    )
                    with gr.Column(visible=False) as clear_button:
                        remove_and_reupload = gr.ClearButton(
                            value="Remove and upload new ones",
                            components=files,
                            size="sm",
                        )
                general_prompt = gr.Textbox(
                    value="",
                    lines=2,
                    label="(1) Textual Description for Character",
                    interactive=True,
                )
                negative_prompt = gr.Textbox(
                    value="", label="(2) Negative_prompt", interactive=True
                )
                style = gr.Dropdown(
                    label="Style template",
                    choices=STYLE_NAMES,
                    value=DEFAULT_STYLE_NAME,
                )
                prompt_array = gr.Textbox(
                    lines=3,
                    value="",
                    label="(3) Comic Description (each line corresponds to a frame).",
                    interactive=True,
                )
                char_path = gr.Textbox(
                    lines=2,
                    value="",
                    visible=False,
                    label="(Optional) Character files",
                    interactive=True,
                )
                char_btn = gr.Button("Load Character files", visible=False)
                with gr.Accordion("(4) Tune the hyperparameters", open=True):
                    font_choice = gr.Dropdown(
                        label="Select Font",
                        choices=[
                            f for f in os.listdir("./fonts") if f.endswith(".ttf")
                        ],
                        value="Inkfree.ttf",
                        info="Select font for the final slide.",
                        interactive=True,
                    )
                    sa32_ = gr.Slider(
                        label=" (The degree of Paired Attention at 32 x 32 self-attention layers) ",
                        minimum=0,
                        maximum=1.0,
                        value=0.5,
                        step=0.1,
                    )
                    sa64_ = gr.Slider(
                        label=" (The degree of Paired Attention at 64 x 64 self-attention layers) ",
                        minimum=0,
                        maximum=1.0,
                        value=0.5,
                        step=0.1,
                    )
                    id_length_ = gr.Slider(
                        label="Number of id images in total images",
                        minimum=1,
                        maximum=4,
                        value=1,
                        step=1,
                    )
                    with gr.Row():
                        seed_ = gr.Slider(
                            label="Seed", minimum=-1, maximum=MAX_SEED, value=0, step=1
                        )
                        randomize_seed_btn = gr.Button("🎲", size="sm")
                    num_steps = gr.Slider(
                        label="Number of sample steps",
                        minimum=20,
                        maximum=100,
                        step=1,
                        value=20,
                    )
                    G_height = gr.Slider(
                        label="height",
                        minimum=256,
                        maximum=1024,
                        step=32,
                        value=768,
                    )
                    G_width = gr.Slider(
                        label="width",
                        minimum=256,
                        maximum=1024,
                        step=32,
                        value=768,
                    )
                    comic_type = gr.Radio(
                        [
                            "No typesetting (default)",
                            "Four Pannel",
                            "Classic Comic Style",
                        ],
                        value="Classic Comic Style",
                        label="Typesetting Style",
                        info="Select the typesetting style ",
                    )
                    guidance_scale = gr.Slider(
                        label="Guidance scale",
                        minimum=0.1,
                        maximum=10.0,
                        step=0.1,
                        value=5,
                    )
                    style_strength_ratio = gr.Slider(
                        label="Style strength of Ref Image (%)",
                        minimum=15,
                        maximum=50,
                        step=1,
                        value=20,
                        visible=False,
                    )
                    Ip_Adapter_Strength = gr.Slider(
                        label="Ip_Adapter_Strength",
                        minimum=0,
                        maximum=1,
                        step=0.1,
                        value=0.5,
                        visible=False,
                    )
                final_run_btn = gr.Button("Generate ! 😺")

        with gr.Column():
            out_image = gr.Gallery(label="Result", columns=2, height="auto")
            generated_information = gr.Markdown(
                label="Generation Details", value="", visible=False
            )
            gr.Markdown(version)
    model_type.change(
        fn=change_visiale_by_model_type,
        inputs=model_type,
        outputs=[control_image_input, style_strength_ratio, Ip_Adapter_Strength],
    )
    files.upload(
        fn=swap_to_gallery, inputs=files, outputs=[uploaded_files, clear_button, files]
    )
    remove_and_reupload.click(
        fn=remove_back_to_files, outputs=[uploaded_files, clear_button, files]
    )
    char_btn.click(fn=load_character_files, inputs=char_path, outputs=[general_prompt])

    randomize_seed_btn.click(
        fn=lambda: random.randint(-1, MAX_SEED),
        inputs=[],
        outputs=seed_,
    )

    final_run_btn.click(fn=set_text_unfinished, outputs=generated_information).then(
        process_generation,
        inputs=[
            sd_type,
            model_type,
            files,
            num_steps,
            style,
            Ip_Adapter_Strength,
            style_strength_ratio,
            guidance_scale,
            seed_,
            sa32_,
            sa64_,
            id_length_,
            general_prompt,
            negative_prompt,
            prompt_array,
            G_height,
            G_width,
            comic_type,
            font_choice,
            char_path,
        ],
        outputs=out_image,
    ).then(fn=set_text_finished, outputs=generated_information)

    gr.Examples(
        examples=[
            [
                0,
                0.5,
                0.5,
                2,
                "[Bob] A man, wearing a black suit\n[Alice]a woman, wearing a white shirt",
                "bad anatomy, bad hands, missing fingers, extra fingers, three hands, three legs, bad arms, missing legs, missing arms, poorly drawn face, bad face, fused face, cloned face, three crus, fused feet, fused thigh, extra crus, ugly fingers, horn, cartoon, cg, 3d, unreal, animate, amputation, disconnected limbs",
                array2string(
                    [
                        "[Bob] at home, read new paper #at home, The newspaper says there is a treasure house in the forest.",
                        "[Bob] on the road, near the forest",
                        "[Alice] is make a call at home # [Bob] invited [Alice] to join him on an adventure.",
                        "[NC]A tiger appeared in the forest, at night ",
                        "[NC] The car on the road, near the forest #They drives to the forest in search of treasure.",
                        "[Bob] very frightened, open mouth, in the forest, at night",
                        "[Alice] very frightened, open mouth, in the forest, at night",
                        "[Bob]  and [Alice] running very fast, in the forest, at night",
                        "[NC] A house in the forest, at night #Suddenly, They discovers the treasure house!",
                        "[Bob]  and [Alice]  in the house filled with  treasure, laughing, at night #He is overjoyed inside the house.",
                    ]
                ),
                "Comic book",
                "Only Using Textual Description",
                get_image_path_list("./examples/taylor"),
                768,
                768,
            ],
            [
                0,
                0.5,
                0.5,
                2,
                "[Bob] A man img, wearing a black suit\n[Alice]a woman img, wearing a white shirt",
                "bad anatomy, bad hands, missing fingers, extra fingers, three hands, three legs, bad arms, missing legs, missing arms, poorly drawn face, bad face, fused face, cloned face, three crus, fused feet, fused thigh, extra crus, ugly fingers, horn, cartoon, cg, 3d, unreal, animate, amputation, disconnected limbs",
                array2string(
                    [
                        "[Bob] at home, read new paper #at home, The newspaper says there is a treasure house in the forest.",
                        "[Bob] on the road, near the forest",
                        "[Alice] is make a call at home # [Bob] invited [Alice] to join him on an adventure.",
                        "[NC] The car on the road, near the forest #They drives to the forest in search of treasure.",
                        "[NC]A tiger appeared in the forest, at night ",
                        "[Bob] very frightened, open mouth, in the forest, at night",
                        "[Alice] very frightened, open mouth, in the forest, at night",
                        "[Bob]  running very fast, in the forest, at night",
                        "[NC] A house in the forest, at night #Suddenly, They discovers the treasure house!",
                        "[Bob]  in the house filled with  treasure, laughing, at night #They are overjoyed inside the house.",
                    ]
                ),
                "Comic book",
                "Using Ref Images",
                get_image_path_list("./examples/twoperson"),
                1024,
                1024,
            ],
            [
                1,
                0.5,
                0.5,
                3,
                "[Taylor]a woman img, wearing a white T-shirt, blue loose hair",
                "bad anatomy, bad hands, missing fingers, extra fingers, three hands, three legs, bad arms, missing legs, missing arms, poorly drawn face, bad face, fused face, cloned face, three crus, fused feet, fused thigh, extra crus, ugly fingers, horn, cartoon, cg, 3d, unreal, animate, amputation, disconnected limbs",
                array2string(
                    [
                        "[Taylor]wake up in the bed",
                        "[Taylor]have breakfast",
                        "[Taylor]is on the road, go to company",
                        "[Taylor]work in the company",
                        "[Taylor]Take a walk next to the company at noon",
                        "[Taylor]lying in bed at night",
                    ]
                ),
                "Japanese Anime",
                "Using Ref Images",
                get_image_path_list("./examples/taylor"),
                768,
                768,
            ],
            [
                0,
                0.5,
                0.5,
                3,
                "[Bob]a man, wearing black jacket",
                "bad anatomy, bad hands, missing fingers, extra fingers, three hands, three legs, bad arms, missing legs, missing arms, poorly drawn face, bad face, fused face, cloned face, three crus, fused feet, fused thigh, extra crus, ugly fingers, horn, cartoon, cg, 3d, unreal, animate, amputation, disconnected limbs",
                array2string(
                    [
                        "[Bob]wake up in the bed",
                        "[Bob]have breakfast",
                        "[Bob]is on the road, go to the company,  close look",
                        "[Bob]work in the company",
                        "[Bob]laughing happily",
                        "[Bob]lying in bed at night",
                    ]
                ),
                "Japanese Anime",
                "Only Using Textual Description",
                get_image_path_list("./examples/taylor"),
                768,
                768,
            ],
            [
                0,
                0.3,
                0.5,
                3,
                "[Kitty]a girl, wearing white shirt, black skirt, black tie, yellow hair",
                "bad anatomy, bad hands, missing fingers, extra fingers, three hands, three legs, bad arms, missing legs, missing arms, poorly drawn face, bad face, fused face, cloned face, three crus, fused feet, fused thigh, extra crus, ugly fingers, horn, cartoon, cg, 3d, unreal, animate, amputation, disconnected limbs",
                array2string(
                    [
                        "[Kitty]at home #at home, began to go to drawing",
                        "[Kitty]sitting alone on a park bench.",
                        "[Kitty]reading a book on a park bench.",
                        "[NC]A squirrel approaches, peeking over the bench. ",
                        "[Kitty]look around in the park. # She looks around and enjoys the beauty of nature.",
                        "[NC]leaf falls from the tree, landing on the sketchbook.",
                        "[Kitty]picks up the leaf, examining its details closely.",
                        "[NC]The brown squirrel appear.",
                        "[Kitty]is very happy # She is very happy to see the squirrel again",
                        "[NC]The brown squirrel takes the cracker and scampers up a tree. # She gives the squirrel cracker",
                    ]
                ),
                "Japanese Anime",
                "Only Using Textual Description",
                get_image_path_list("./examples/taylor"),
                768,
                768,
            ],
        ],
        inputs=[
            seed_,
            sa32_,
            sa64_,
            id_length_,
            general_prompt,
            negative_prompt,
            prompt_array,
            style,
            model_type,
            files,
            G_height,
            G_width,
        ],
        # outputs=[post_sketch, binary_matrixes, *color_row, *colors, *prompts, gen_prompt_vis, general_prompt, seed_],
        # run_on_click=True,
        label="😺 Examples 😺",
    )
    gr.Markdown(article)


demo.launch(server_name="0.0.0.0", share=True)