import gradio as gr import torch from huggingface_hub import hf_hub_download from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline model_checkpoint_nllb = "facebook/nllb-200-distilled-600M" model_checkpoint_marian_en = "mbarnig/MarianNMT-tatoeba-en-lb" model_checkpoint_marian_lb = "mbarnig/MarianNMT-tatoeba-lb-en" model_checkpoint_t5_mt5 = "mbarnig/T5-mt5-tatoeba-en-lb" my_title = "🇬🇧 Mir iwwersetzen vun an op Lëtzebuergesch ! 🇫🇷" my_description = "English-Luxembourgish machine translation (MT) demo based on 3 open-source transformer models: Facebook-NLLB, Microsoft-MarianNMT & Google-T5/mt5." my_article = "

User guide

1. Press the submit button to translate an english text with the default values. 2. Compare the result with the luxembourgish example. 3. Select a model and a translation direction and enter your own text. Have fun !

Go to Internet with a Brain to read my french publication Das Küsschen und die Sonne stritten sich ... about the history of machine translation in Luxembourg from 1975 until today.

" default_input = "The North Wind and the Sun were disputing which was the stronger, when a traveler came along wrapped in a warm cloak." TRANSLATION_MODELS = [ "NLLB", "MarianNMT", "T5-mt5" ] TRANSLATION_DIRECTION = [ "en -> lb", "lb -> en" ] EXAMPLE = "..." my_inputs = [ gr.Textbox(lines=5, label="Input", value=default_input), gr.Radio(label="Translation Model", choices = TRANSLATION_MODELS, value = "NLLB"), gr.Radio(label="Translation Direction", choices = TRANSLATION_DIRECTION, value = "en -> lb") ] my_output = gr.Textbox(lines=5, label="Translation") def iwwersetz(source_text, model, direc): if model == "NLLB": translator = pipeline("translation", model=model_checkpoint_nllb) if direc == "en -> lb": translation = translator(source_text, src_lang="eng_Latn", tgt_lang="ltz_Latn") # translation = source_text else: translation = translator(source_text, src_lang="ltz_Latn", tgt_lang="eng_Latn") # translation = source_text elif model == "MarianNMT": if direc == "en -> lb": translator = pipeline("translation", model=model_checkpoint_marian_en) # translation = source_text translation = translator(source_text) else: translator = pipeline("translation", model=model_checkpoint_marian_lb) # translation = source_text translation = translator(source_text) elif model == "T5-mt5": translator = pipeline("translation", model=model_checkpoint_t5_mt5) # translation = source_text translation = translator(source_text) else: translation = "Please select a Translation Model !" return translation demo=gr.Interface( fn=iwwersetz, inputs=my_inputs, outputs=my_output, title=my_title, description=my_description, article=my_article, allow_flagging=False) demo.launch()