|
import gradio as gr |
|
import numpy as np |
|
from huggingface_hub import hf_hub_download |
|
from transformers import pipeline |
|
|
|
REPO_ID_NLLB = "facebook/nllb-200-distilled-600M" |
|
REPO_ID_MARIANNMT_en = "mbarnig/MarianNMT-tatoeba-en-lb" |
|
REPO_ID_MARIANNMT_lb = "mbarnig/MarianNMT-tatoeba-lb-en" |
|
REPO_ID_T5MT5 = "mbarnig/T5-mt5-tatoeba-en-lb" |
|
|
|
translator = pipeline("translation", model=REPO_ID_NLLB) |
|
|
|
my_title = "🇫🇷 Mir iwwersetzen vun an op Lëtzebuergesch ! 🇬🇧" |
|
my_description = "English-Luxembourgish machine translation (MT) demo based on 3 transformer models: NLLB, MarianNMT & T5/mt5." |
|
my_article = "abc" |
|
|
|
TRANSLATION_MODELS = [ |
|
"NLLB", |
|
"MarianNMT", |
|
"T5/mt5" |
|
] |
|
|
|
TRANSLATION_DIRECTION = [ |
|
"en -> lb", |
|
"lb -> en" |
|
] |
|
|
|
EXAMPLE = "..." |
|
|
|
my_input = gr.Textbox(label="Input") |
|
my_output = gr.Textbox(label="Translation") |
|
|
|
def iwwersetz(source_text): |
|
translation = translator(source_text) |
|
return translation |
|
|
|
demo=gr.Interface( |
|
fn=iwwersetz, |
|
inputs=my_input, |
|
outputs=my_output, |
|
title=my_title, |
|
description=my_description, |
|
article=my_article, |
|
examples=EXAMPLE, |
|
allow_flagging=False) |
|
demo.launch() |