|
import gradio as gr |
|
import torch |
|
from huggingface_hub import hf_hub_download |
|
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline |
|
|
|
REPO_ID_NLLB = "facebook/nllb-200-distilled-600M" |
|
REPO_ID_MARIANNMT_en = "mbarnig/MarianNMT-tatoeba-en-lb" |
|
REPO_ID_MARIANNMT_lb = "mbarnig/MarianNMT-tatoeba-lb-en" |
|
REPO_ID_T5MT5 = "mbarnig/T5-mt5-tatoeba-en-lb" |
|
|
|
my_title = "🇬🇧 Mir iwwersetzen vun an op Lëtzebuergesch ! 🇫🇷" |
|
my_description = "English-Luxembourgish machine translation (MT) demo based on 3 open-source transformer models: Facebook-NLLB, Microsoft-MarianNMT & Google-T5/mt5." |
|
my_article = "<h3>User guide</h3><p>1. Press the submit button to translate an english text with the default values. 2. Compare the result with the luxembourgish example. 3. Select a model and a translation direction and enter your own text. Have fun !</p><p>Go to <a href='https://www.web3.lu/'>Internet with a Brain</a> to read my french publication <a href='https://www.web3.lu/'>Das Küsschen und die Sonne stritten sich ...</a> about the history of machine translation in Luxembourg from 1975 until today.</p>" |
|
default_input = "The North Wind and the Sun were disputing which was the stronger, when a traveler came along wrapped in a warm cloak." |
|
|
|
TRANSLATION_MODELS = [ |
|
"NLLB", |
|
"MarianNMT", |
|
"T5/mt5" |
|
] |
|
|
|
TRANSLATION_DIRECTION = [ |
|
"en -> lb", |
|
"lb -> en" |
|
] |
|
|
|
EXAMPLE = "..." |
|
|
|
my_inputs = [ |
|
gr.Textbox(lines=5, label="Input", value=default_input), |
|
gr.Radio(label="Translation Model", choices = TRANSLATION_MODELS, value = "NLLB"), |
|
gr.Radio(label="Translation Direction", choices = TRANSLATION_DIRECTION, value = "en -> lb") |
|
] |
|
|
|
my_output = gr.Textbox(lines=5, label="Translation") |
|
|
|
def customization(myModel, direc): |
|
if myModel == "NLLB": |
|
translator = pipeline("translation", model=REPO_ID_NLLB) |
|
elif myModel == "MarianNMT": |
|
if direc == "en -> lb": |
|
translator = pipeline("translation", model=REPO_ID_MARIANNMT_en) |
|
elif direc == "lb -> en": |
|
translator = pipeline("translation", model=REPO_ID_MARIANNMT_lb) |
|
else: |
|
print("Please select a Translation Direction !") |
|
elif myModel == "T5/mt5": |
|
translator = pipeline("translation", model=REPO_ID_T5MT5) |
|
|
|
|
|
else: |
|
print("Please select a Translation Model !") |
|
return myModel |
|
|
|
def iwwersetz(source_text, model, direc): |
|
translator = customization(model, direc) |
|
if model == "NLLB": |
|
if direc == "en -> lb": |
|
|
|
translation = source_text |
|
else: |
|
|
|
translation = source_text |
|
else: |
|
|
|
translation = source_text |
|
return translation |
|
|
|
demo=gr.Interface( |
|
fn=iwwersetz, |
|
inputs=my_inputs, |
|
outputs=my_output, |
|
title=my_title, |
|
description=my_description, |
|
article=my_article, |
|
allow_flagging=False) |
|
demo.launch() |