File size: 3,212 Bytes
95a5ee1
f28142c
95a5ee1
5aa2f07
95a5ee1
f57d6cb
148e875
 
f57d6cb
95a5ee1
e41acb8
 
3c434c0
e78a989
95a5ee1
 
 
 
bdc8f4b
95a5ee1
 
 
 
 
 
 
14b1706
 
be3bdac
87667c1
 
86d654e
be3bdac
 
 
14b1706
f28142c
 
0a3a588
f57d6cb
2164c20
3588a89
f28142c
2164c20
3588a89
bdc8f4b
154ea2f
 
3588a89
 
154ea2f
 
3588a89
 
bdc8f4b
148e875
3588a89
 
f28142c
bdc8f4b
14b1706
 
 
 
be3bdac
266a47d
 
78d5868
 
 
14b1706
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
import gradio as gr
import torch
from huggingface_hub import hf_hub_download
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline

model_checkpoint_nllb = "facebook/nllb-200-distilled-600M" 
model_checkpoint_marian_en = "mbarnig/MarianNMT-tatoeba-en-lb"
model_checkpoint_marian_lb = "mbarnig/MarianNMT-tatoeba-lb-en"
model_checkpoint_t5_mt5 = "mbarnig/T5-mt5-tatoeba-en-lb"

my_title = "🇬🇧 Mir iwwersetzen vun an op Lëtzebuergesch ! 🇫🇷"
my_description = "English-Luxembourgish machine translation (MT) demo based on 3 open-source transformer models: Facebook-NLLB, Microsoft-MarianNMT & Google-T5/mt5."
my_article = "<h3>User guide</h3><p>1. Press the submit button to translate an english text with the default values. 2. Compare the result with the luxembourgish example. 3. Select a model and a translation direction and enter your own text. Have fun !</p><p>Go to <a href='https://www.web3.lu/'>Internet with a Brain</a> to read my french publication <a href='https://www.web3.lu/'>Das Küsschen und die Sonne stritten sich ...</a> about the history of machine translation in Luxembourg from 1975 until today.</p>"
default_input = "The North Wind and the Sun were disputing which was the stronger, when a traveler came along wrapped in a warm cloak."

TRANSLATION_MODELS = [
    "NLLB",
    "MarianNMT",
    "T5-mt5"
]

TRANSLATION_DIRECTION = [
    "en -> lb",
    "lb -> en"
]

EXAMPLE = "..."

my_inputs = [
    gr.Textbox(lines=5, label="Input", value=default_input),
    gr.Radio(label="Translation Model", choices = TRANSLATION_MODELS, value = "NLLB"),
    gr.Radio(label="Translation Direction", choices = TRANSLATION_DIRECTION, value = "en -> lb")
]

my_output = gr.Textbox(lines=5, label="Translation")

def iwwersetz(source_text, model, direc):
    if model == "NLLB":
        translator = pipeline("translation", model=model_checkpoint_nllb) 
        if direc == "en -> lb":         
            translation = translator(source_text, src_lang="eng_Latn", tgt_lang="ltz_Latn")
            # translation = source_text
        else:
            translation = translator(source_text, src_lang="ltz_Latn", tgt_lang="eng_Latn") 
            # translation = source_text    
    elif model == "MarianNMT":
        if direc == "en -> lb":
            translator = pipeline("translation", model=model_checkpoint_marian_en)        
            # translation = source_text  
            translation = translator(source_text)             
        else:
            translator = pipeline("translation", model=model_checkpoint_marian_lb)        
            # translation = source_text      
            translation = translator(source_text)            
    elif model == "T5-mt5":
            translator = pipeline("translation", model=model_checkpoint_t5_mt5)        
            # translation = source_text      
            translation = translator(source_text)                    
    else:
        translation = "Please select a Translation Model !"    
    return translation
    
demo=gr.Interface(
   fn=iwwersetz,
   inputs=my_inputs,
   outputs=my_output,
   title=my_title, 
   description=my_description, 
   article=my_article,
   allow_flagging=False)
demo.launch()