import os import argparse import numpy as np import torch from scipy.io.wavfile import read from omegaconf import OmegaConf MATPLOTLIB_FLAG = False def load_wav_to_torch(full_path): sampling_rate, data = read(full_path) return torch.FloatTensor(data.astype(np.float32)), sampling_rate f0_bin = 256 f0_max = 1100.0 f0_min = 50.0 f0_mel_min = 1127 * np.log(1 + f0_min / 700) f0_mel_max = 1127 * np.log(1 + f0_max / 700) def f0_to_coarse(f0): is_torch = isinstance(f0, torch.Tensor) f0_mel = 1127 * (1 + f0 / 700).log() if is_torch else 1127 * \ np.log(1 + f0 / 700) f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - f0_mel_min) * \ (f0_bin - 2) / (f0_mel_max - f0_mel_min) + 1 f0_mel[f0_mel <= 1] = 1 f0_mel[f0_mel > f0_bin - 1] = f0_bin - 1 f0_coarse = ( f0_mel + 0.5).long() if is_torch else np.rint(f0_mel).astype(np.int) assert f0_coarse.max() <= 255 and f0_coarse.min( ) >= 1, (f0_coarse.max(), f0_coarse.min()) return f0_coarse def get_hparams(init=True): parser = argparse.ArgumentParser() parser.add_argument('-c', '--config', type=str, default="./configs/base.yaml", help='YAML file for configuration') args = parser.parse_args() hparams = OmegaConf.load(args.config) model_dir = os.path.join("./logs", hparams.train.model) if not os.path.exists(model_dir): os.makedirs(model_dir) config_save_path = os.path.join(model_dir, "config.json") os.system(f"cp {args.config} {config_save_path}") hparams.model_dir = model_dir return hparams