Spaces:
Running
Running
import os | |
import numpy as np | |
import argparse | |
import torch | |
from whisper.model import Whisper, ModelDimensions | |
from whisper.audio import load_audio, pad_or_trim, log_mel_spectrogram | |
def load_model(path) -> Whisper: | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
checkpoint = torch.load(path, map_location=device) | |
dims = ModelDimensions(**checkpoint["dims"]) | |
model = Whisper(dims) | |
model.load_state_dict(checkpoint["model_state_dict"]) | |
return model.to(device) | |
def pred_ppg(whisper: Whisper, wavPath, ppgPath): | |
audio = load_audio(wavPath) | |
audln = audio.shape[0] | |
ppg_a = [] | |
idx_s = 0 | |
while (idx_s + 25 * 16000 < audln): | |
short = audio[idx_s:idx_s + 25 * 16000] | |
idx_s = idx_s + 25 * 16000 | |
ppgln = 25 * 16000 // 320 | |
# short = pad_or_trim(short) | |
mel = log_mel_spectrogram(short).to(whisper.device) | |
with torch.no_grad(): | |
ppg = whisper.encoder(mel.unsqueeze(0)).squeeze().data.cpu().float().numpy() | |
ppg = ppg[:ppgln,] # [length, dim=1024] | |
ppg_a.extend(ppg) | |
if (idx_s < audln): | |
short = audio[idx_s:audln] | |
ppgln = (audln - idx_s) // 320 | |
# short = pad_or_trim(short) | |
mel = log_mel_spectrogram(short).to(whisper.device) | |
with torch.no_grad(): | |
ppg = whisper.encoder(mel.unsqueeze(0)).squeeze().data.cpu().float().numpy() | |
ppg = ppg[:ppgln,] # [length, dim=1024] | |
ppg_a.extend(ppg) | |
np.save(ppgPath, ppg_a, allow_pickle=False) | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser() | |
parser.description = 'please enter embed parameter ...' | |
parser.add_argument("-w", "--wav", help="wav", dest="wav") | |
parser.add_argument("-p", "--ppg", help="ppg", dest="ppg") | |
args = parser.parse_args() | |
print(args.wav) | |
print(args.ppg) | |
wavPath = args.wav | |
ppgPath = args.ppg | |
whisper = load_model(os.path.join("whisper_pretrain", "medium.pt")) | |
pred_ppg(whisper, wavPath, ppgPath) | |