sovits5.0 / whisper /inference.py
maxmax20160403's picture
INIT
10f957b
raw
history blame
2.02 kB
import os
import numpy as np
import argparse
import torch
from whisper.model import Whisper, ModelDimensions
from whisper.audio import load_audio, pad_or_trim, log_mel_spectrogram
def load_model(path) -> Whisper:
device = "cuda" if torch.cuda.is_available() else "cpu"
checkpoint = torch.load(path, map_location=device)
dims = ModelDimensions(**checkpoint["dims"])
model = Whisper(dims)
model.load_state_dict(checkpoint["model_state_dict"])
return model.to(device)
def pred_ppg(whisper: Whisper, wavPath, ppgPath):
audio = load_audio(wavPath)
audln = audio.shape[0]
ppg_a = []
idx_s = 0
while (idx_s + 25 * 16000 < audln):
short = audio[idx_s:idx_s + 25 * 16000]
idx_s = idx_s + 25 * 16000
ppgln = 25 * 16000 // 320
# short = pad_or_trim(short)
mel = log_mel_spectrogram(short).to(whisper.device)
with torch.no_grad():
ppg = whisper.encoder(mel.unsqueeze(0)).squeeze().data.cpu().float().numpy()
ppg = ppg[:ppgln,] # [length, dim=1024]
ppg_a.extend(ppg)
if (idx_s < audln):
short = audio[idx_s:audln]
ppgln = (audln - idx_s) // 320
# short = pad_or_trim(short)
mel = log_mel_spectrogram(short).to(whisper.device)
with torch.no_grad():
ppg = whisper.encoder(mel.unsqueeze(0)).squeeze().data.cpu().float().numpy()
ppg = ppg[:ppgln,] # [length, dim=1024]
ppg_a.extend(ppg)
np.save(ppgPath, ppg_a, allow_pickle=False)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.description = 'please enter embed parameter ...'
parser.add_argument("-w", "--wav", help="wav", dest="wav")
parser.add_argument("-p", "--ppg", help="ppg", dest="ppg")
args = parser.parse_args()
print(args.wav)
print(args.ppg)
wavPath = args.wav
ppgPath = args.ppg
whisper = load_model(os.path.join("whisper_pretrain", "medium.pt"))
pred_ppg(whisper, wavPath, ppgPath)