File size: 6,578 Bytes
10f957b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
from vits.models import SynthesizerInfer
from omegaconf import OmegaConf
import torchcrepe
import torch
import io
import os
import gradio as gr
import librosa
import numpy as np
import soundfile

import logging

logging.getLogger('numba').setLevel(logging.WARNING)
logging.getLogger('markdown_it').setLevel(logging.WARNING)
logging.getLogger('urllib3').setLevel(logging.WARNING)
logging.getLogger('matplotlib').setLevel(logging.WARNING)


def load_svc_model(checkpoint_path, model):
    assert os.path.isfile(checkpoint_path)
    checkpoint_dict = torch.load(checkpoint_path, map_location="cpu")
    saved_state_dict = checkpoint_dict["model_g"]
    state_dict = model.state_dict()
    new_state_dict = {}
    for k, v in state_dict.items():
        new_state_dict[k] = saved_state_dict[k]
    model.load_state_dict(new_state_dict)
    return model


def compute_f0_nn(filename, device):
    audio, sr = librosa.load(filename, sr=16000)
    assert sr == 16000
    # Load audio
    audio = torch.tensor(np.copy(audio))[None]
    # Here we'll use a 20 millisecond hop length
    hop_length = 320
    # Provide a sensible frequency range for your domain (upper limit is 2006 Hz)
    # This would be a reasonable range for speech
    fmin = 50
    fmax = 1000
    # Select a model capacity--one of "tiny" or "full"
    model = "full"
    # Pick a batch size that doesn't cause memory errors on your gpu
    batch_size = 512
    # Compute pitch using first gpu
    pitch, periodicity = torchcrepe.predict(
        audio,
        sr,
        hop_length,
        fmin,
        fmax,
        model,
        batch_size=batch_size,
        device=device,
        return_periodicity=True,
    )
    pitch = np.repeat(pitch, 2, -1)  # 320 -> 160 * 2
    periodicity = np.repeat(periodicity, 2, -1)  # 320 -> 160 * 2
    # CREPE was not trained on silent audio. some error on silent need filter.
    periodicity = torchcrepe.filter.median(periodicity, 9)
    pitch = torchcrepe.filter.mean(pitch, 9)
    pitch[periodicity < 0.1] = 0
    pitch = pitch.squeeze(0)
    return pitch


device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
hp = OmegaConf.load("configs/base.yaml")
model = SynthesizerInfer(
    hp.data.filter_length // 2 + 1,
    hp.data.segment_size // hp.data.hop_length,
    hp)
load_svc_model("vits_pretrain/sovits5.0-48k-debug.pth", model)
model.eval()
model.to(device)


def svc_change(argswave, argsspk):

    argsppg = "svc_tmp.ppg.npy"
    os.system(f"python whisper/inference.py -w {argswave} -p {argsppg}")

    spk = np.load(argsspk)
    spk = torch.FloatTensor(spk)

    ppg = np.load(argsppg)
    ppg = np.repeat(ppg, 2, 0)  # 320 PPG -> 160 * 2
    ppg = torch.FloatTensor(ppg)

    pit = compute_f0_nn(argswave, device)
    pit = torch.FloatTensor(pit)

    len_pit = pit.size()[0]
    len_ppg = ppg.size()[0]
    len_min = min(len_pit, len_ppg)
    pit = pit[:len_min]
    ppg = ppg[:len_min, :]

    with torch.no_grad():

        spk = spk.unsqueeze(0).to(device)
        source = pit.unsqueeze(0).to(device)
        source = model.pitch2source(source)

        hop_size = hp.data.hop_length
        all_frame = len_min
        hop_frame = 10
        out_chunk = 2500  # 25 S
        out_index = 0
        out_audio = []

        while (out_index + out_chunk < all_frame):
            if (out_index == 0):  # start frame
                cut_s = out_index
                cut_s_48k = 0
            else:
                cut_s = out_index - hop_frame
                cut_s_48k = hop_frame * hop_size

            if (out_index + out_chunk + hop_frame > all_frame):  # end frame
                cut_e = out_index + out_chunk
                cut_e_48k = 0
            else:
                cut_e = out_index + out_chunk + hop_frame
                cut_e_48k = -1 * hop_frame * hop_size

            sub_ppg = ppg[cut_s:cut_e, :].unsqueeze(0).to(device)
            sub_pit = pit[cut_s:cut_e].unsqueeze(0).to(device)
            sub_len = torch.LongTensor([cut_e - cut_s]).to(device)
            sub_har = source[:, :, cut_s *
                             hop_size:cut_e * hop_size].to(device)
            sub_out = model.inference(sub_ppg, sub_pit, spk, sub_len, sub_har)
            sub_out = sub_out[0, 0].data.cpu().detach().numpy()

            sub_out = sub_out[cut_s_48k:cut_e_48k]
            out_audio.extend(sub_out)
            out_index = out_index + out_chunk

        if (out_index < all_frame):
            cut_s = out_index - hop_frame
            cut_s_48k = hop_frame * hop_size
            sub_ppg = ppg[cut_s:, :].unsqueeze(0).to(device)
            sub_pit = pit[cut_s:].unsqueeze(0).to(device)
            sub_len = torch.LongTensor([all_frame - cut_s]).to(device)
            sub_har = source[:, :, cut_s * hop_size:].to(device)
            sub_out = model.inference(sub_ppg, sub_pit, spk, sub_len, sub_har)
            sub_out = sub_out[0, 0].data.cpu().detach().numpy()

            sub_out = sub_out[cut_s_48k:]
            out_audio.extend(sub_out)
        out_audio = np.asarray(out_audio)

    return out_audio


def svc_main(sid, input_audio):
    if input_audio is None:
        return "You need to upload an audio", None
    sampling_rate, audio = input_audio
    audio = (audio / np.iinfo(audio.dtype).max).astype(np.float32)
    if len(audio.shape) > 1:
        audio = librosa.to_mono(audio.transpose(1, 0))
    if sampling_rate != 16000:
        audio = librosa.resample(audio, orig_sr=sampling_rate, target_sr=16000)
    if (len(audio) > 16000*100):
        audio = audio[:16000*100]
    wav_path = "temp.wav"
    soundfile.write(wav_path, audio, 16000, format="wav")
    out_audio = svc_change(wav_path, f"configs/singers/singer00{sid}.npy")
    return "Success", (48000, out_audio)


app = gr.Blocks()
with app:
    with gr.Tabs():
        with gr.TabItem("sovits 5.0"):
            gr.Markdown(value="""
                基于开源数据:Multi-Singer
                
                https://github.com/Multi-Singer/Multi-Singer.github.io

                [轻度伴奏可以无需去伴奏]就能直接进行歌声转换的SVC库
                """)
            sid = gr.Dropdown(label="音色", choices=[
                              "22", "33", "47", "51"], value="47")
            vc_input3 = gr.Audio(label="上传音频")
            vc_submit = gr.Button("转换", variant="primary")
            vc_output1 = gr.Textbox(label="Output Message")
            vc_output2 = gr.Audio(label="准换后音频")
        vc_submit.click(svc_main, [sid, vc_input3], [vc_output1, vc_output2])

    app.launch()