import numpy as np import pandas as pd from rapidfuzz import process, fuzz, utils def clean_dataframe(df, column, remove_na=True, remove_non_words=True, remove_symbols=True, remove_duplicates=True): """ This function cleans the given dataframe by removing NaN, non-words, symbols, and duplicates. Parameters: df (pandas.DataFrame): The dataframe to clean. column (str): The column to clean. remove_na (bool): Whether to remove NaN or not. remove_non_words (bool): Whether to remove non-words or not. remove_symbols (bool): Whether to remove symbols or not. remove_duplicates (bool): Whether to remove duplicates or not. Returns: pandas.DataFrame: The cleaned dataframe. """ # Lowercase the column df[column + ' Clean'] = df[column].apply(lambda x: str(x).lower()) # Remove non words (symbols, numbers, etc.) if remove_non_words: df[column + ' Clean'] = '' for i in range(len(df)): row = df.iloc[i] clean_word_list = [] for word in str(row[column]).lower().split(): if not any(char.isdigit() for char in word): clean_word_list.append(word) df.at[i, column + ' Clean'] = ' '.join(clean_word_list) # Remove symbols, but keep numbers if remove_symbols: df[column + ' Clean'] = df[column + ' Clean'].apply(lambda x: ''.join(letter for letter in x if letter.isalnum() or letter.isspace())) # Drop if the new column is NaN or empty string (when the whitespace is removed, it is '') if remove_na: df = df[df[column + ' Clean'].notna()] df = df[df[column + ' Clean'].replace(' ','') != ''] # Remove duplicates if remove_duplicates: df = df.drop_duplicates(subset=[column + ' Clean']) return df def fuzzy_join(row, df_reference, column_reference, column_matched_to, take_regist_number=False, take_source = False, set_ratio_weight=0.5, ratio_weight=0.5): """ This function applies fuzzy join to the given row and returns the matched product name and nomor pendaftaran based on the maximum similarity score between the two columns. Parameters: row (pandas.Series): The row to apply fuzzy join on. df_reference (pandas.DataFrame): The dataframe to compare with. column_reference (str): The column to use for fuzzy join. column_matched_to (str): The column to compare with. take_regist_number (bool): Whether to take the nomor pendaftaran from the registered fertilizer dataset. set_ratio_weight (int): The weight to set for the ratio-based similarity metric. ratio_weight (int): The weight to set for the weighted average of the two similarity metrics. Returns: pandas.DataFrame: The input dataframe with additional columns for matched product name and nomor pendaftaran. """ similar_product_name = '' similarity_score = 0 nomor_pendaftaran = '' source = '' for product_name in df_reference[column_reference]: if set_ratio_weight == 0: score = fuzz.ratio(product_name.lower(), row[column_matched_to].lower(), processor=utils.default_process) elif ratio_weight == 0: score = fuzz.token_set_ratio(product_name, row[column_matched_to], processor=utils.default_process) else: score = set_ratio_weight * fuzz.token_set_ratio(product_name, row[column_matched_to], processor=utils.default_process) + ratio_weight * fuzz.ratio(product_name.lower(), row[column_matched_to].lower(), processor=utils.default_process) if score > similarity_score: similarity_score = score similar_product_name = product_name if take_regist_number: nomor_pendaftaran = df_reference[df_reference[column_reference] == product_name]['Nomor Pendaftaran'].iloc[0] if take_source: source = df_reference[df_reference[column_reference] == product_name]['Source'].iloc[0] if take_regist_number and take_source: return similar_product_name, similarity_score, nomor_pendaftaran, source elif take_regist_number: return similar_product_name, similarity_score, nomor_pendaftaran elif take_source: return similar_product_name, similarity_score, source else: return similar_product_name, similarity_score def fuzzy_join_compare(df, first_column, second_column, registered_fertilizers, take_regist_number=True, set_ratio_weight=1, ratio_weight=0): """ This function applies fuzzy join to the given dataframe and returns the matched product name and nomor pendaftaran based on the maximum similarity score between the two columns. Parameters: df (pandas.DataFrame): The dataframe to apply fuzzy join on. first_column (str): The first column to use for fuzzy join. second_column (str): The second column to compare with. registered_fertilizers (pandas.DataFrame): The dataframe containing the registered fertilizers. take_regist_number (bool): Whether to take the nomor pendaftaran from the registered fertilizer dataset. set_ratio_weight (int): The weight to set for the ratio-based similarity metric. ratio_weight (int): The weight to set for the weighted average of the two similarity metrics. Returns: pandas.DataFrame: The input dataframe with additional columns for matched product name and nomor pendaftaran. """ df['Matched Product Name 1'], df['Similarity Score 1'], df['Nomor Pendaftaran 1'] = zip(*df.apply(lambda row: fuzzy_join(row, registered_fertilizers, 'Nama Lengkap', first_column, take_regist_number=take_regist_number, set_ratio_weight=set_ratio_weight, ratio_weight=ratio_weight), axis=1)) df['Matched Product Name 2'], df['Similarity Score 2'], df['Nomor Pendaftaran 2'] = zip(*df.apply(lambda row: fuzzy_join(row, registered_fertilizers, 'Nama Lengkap', second_column, take_regist_number=take_regist_number, set_ratio_weight=set_ratio_weight, ratio_weight=ratio_weight), axis=1)) # Take the maximum similarity score and take the matched product name and nomor pendaftaran based on that df['Max Similarity Score'] = df[['Similarity Score 1', 'Similarity Score 2']].max(axis=1) # If condition: if similarity score 1 is higher than equal to similarity score 2, take the matched product name 1 as matched product name, else take matched product name 2 df['Matched Product Name'] = np.where(df['Similarity Score 1'] >= df['Similarity Score 2'], df['Matched Product Name 1'], df['Matched Product Name 2']) # If condition: if similarity score 1 is higher than equal to similarity score 2, take the nomor pendaftaran 1 as nomor pendaftaran, else take nomor pendaftaran 2 df['Nomor Pendaftaran'] = np.where(df['Similarity Score 1'] >= df['Similarity Score 2'], df['Nomor Pendaftaran 1'], df['Nomor Pendaftaran 2']) # Remove the columns that are no longer needed such as the matched product name 1 and 2, similarity score 1 and 2, and nomor pendaftaran 1 and 2 df.drop(columns=['Matched Product Name 1', 'Matched Product Name 2', 'Similarity Score 1', 'Similarity Score 2', 'Nomor Pendaftaran 1', 'Nomor Pendaftaran 2'], inplace=True) return df def slice_with_filter(df, column, ref_df, use_filter=False, filter_condition=None): """ This function slices the given dataframe based on the given reference dataframe. :param df: pandas.DataFrame, dataframe to be sliced :param column: str, column to be sliced :param ref_df: pandas.DataFrame, reference dataframe :param use_filter: bool, whether to use filter or not :param filter_condition: str, filter condition :return: pandas.DataFrame, sliced dataframe """ if use_filter: ref_df = ref_df[filter_condition] return df[~df[column].isin(ref_df[column].to_list())] def combine_catalog(column_1, column_2, source_1, source_2): """ This function combines two columns into one dataframe. :param column_1: pandas.Series, first column :param column_2: pandas.Series, second column :param source_1: str, source of first column :param source_2: str, source of second column :return: pandas.DataFrame, combined dataframe """ combined_catalog = pd.concat([column_1, column_2]) combined_catalog = combined_catalog.to_frame(name='Registered Product') combined_catalog['Source'] = pd.concat([column_1.apply(lambda x: source_1), column_2.apply(lambda x: source_2)]) combined_catalog.reset_index(drop=True, inplace=True) return combined_catalog def clean_category_dataframe(df, category_column, product_name_column, reference_table, reference_column, split=False): """ This function cleans the given dataframe by removing NaN, non-words, symbols, and duplicates. Parameters: df (pandas.DataFrame): The dataframe to clean. category_column (str): The column containing category name. product_name_column (str): The column containing product name. reference_table (pandas.DataFrame): The reference table to be used for fuzzy join. reference_column (str): The column to be used for fuzzy join. split (bool): Whether to split the dataframe into two or not. Returns: pandas.DataFrame: The cleaned dataframe. """ # If column does not contain "Category", fill it with "Unknown" (including those that are NaN) df[category_column] = df[category_column].apply(lambda x: x if isinstance(x, str) and 'Category' in x else 'Unknown') # If column contains "Category", remove the word "Category" and replace "\n" with "," df[category_column] = df[category_column].apply(lambda x: x.replace('Category', '').replace('\n', ',') if isinstance(x, str) else x) # Replace "Lihat Lebih Banyak" with empty string df[category_column] = df[category_column].apply(lambda x: x.replace('Lihat Lebih Banyak', '') if isinstance(x, str) else x) # Add category_list column df['category_list'] = df[category_column].apply(lambda x: x.split(',') if isinstance(x, str) else x) # Add product_name_clean df['product_name_clean'] = df[product_name_column].apply(lambda x: str(x).lower().strip()) # Remove duplicates df = df.drop_duplicates(subset=['product_name_clean'], keep = 'last') # Left join with product query df_reference = reference_table.merge(df[['product_name_clean','category_list']], how='left', left_on=reference_table[reference_column].str.lower().str.strip(), right_on=df['product_name_clean']) # convert category_list that contains 'Unknown' to NaN df_reference['category_list'] = df_reference['category_list'].apply(lambda x: np.nan if isinstance(x, list) and 'Unknown' in x else x) # if the list in category_list contains empty string element, drop that element from the list df_reference['category_list'] = df_reference['category_list'].apply(lambda x: [i for i in x if i != ''] if isinstance(x, list) else x) # Choose final columns df_reference = df_reference[['Product Name', 'Product Name Clean', 'category_list']] # Strip df_reference['category_list'] = df_reference['category_list'].apply(lambda x: [i.strip() for i in x] if isinstance(x, list) else x) if split: return df_reference, df_reference.dropna(subset=['category_list']) else: return df_reference