matthewfarant commited on
Commit
c80a1a0
1 Parent(s): 83f1ea4

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +133 -0
app.py ADDED
@@ -0,0 +1,133 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Initialize LLM and Tools
2
+ local_llm = 'llama3.1'
3
+ llama3 = ChatOllama(model=local_llm, temperature=1)
4
+ llama3_json = ChatOllama(model=local_llm, format='json', temperature=0)
5
+ google_search = GoogleSearchAPIWrapper()
6
+ os.environ["GOOGLE_CSE_ID"] = "72150c1d158b54108"
7
+ os.environ["GOOGLE_API_KEY"] = "AIzaSyAaNoF_a27HM3C87ObELRLTeVCrke_3OJA"
8
+ firecrawl_app = FirecrawlApp(api_key='fc-beeb8af53ea6460fbe9f5c2997c7b39b')
9
+
10
+ # Query Transformation
11
+ query_prompt = PromptTemplate(
12
+ template="""
13
+
14
+ <|begin_of_text|>
15
+
16
+ <|start_header_id|>system<|end_header_id|>
17
+
18
+ You are an expert at crafting web search queries for fact checking.
19
+ More often than not, a user will provide an information that they wish to fact check, however it might not be in the best format.
20
+ Reword their query to be the most effective web search string possible.
21
+ Return the JSON with a single key 'query' with no premable or explanation.
22
+
23
+ Information to transform: {question}
24
+
25
+ <|eot_id|>
26
+
27
+ <|start_header_id|>assistant<|end_header_id|>
28
+
29
+ """,
30
+ input_variables=["question"],
31
+ )
32
+
33
+ # Chain
34
+ query_chain = query_prompt | llama3_json | JsonOutputParser()
35
+
36
+ # Google Search and Firecrawl Setup
37
+ def search_and_scrape(keyword):
38
+ search_results = google_search.results(keyword, 3)
39
+ scraped_data = []
40
+ for result in search_results:
41
+ url = result['link']
42
+ scrape_response = firecrawl_app.scrape_url(url=url, params={'formats': ['markdown']})
43
+ scraped_data.append(scrape_response)
44
+ return scraped_data
45
+
46
+ # Summarizer
47
+ summarize_prompt = PromptTemplate(
48
+ template="""
49
+
50
+ <|begin_of_text|>
51
+
52
+ <|start_header_id|>system<|end_header_id|>
53
+
54
+ You are an expert at summarizing web crawling results. The user will give you multiple web search result with different topics. Your task is to summarize all the important information
55
+ from the article in a readable paragraph. It is okay if one paragraph contains multiple topics.
56
+
57
+ Information to transform: {question}
58
+
59
+ <|eot_id|>
60
+
61
+ <|start_header_id|>assistant<|end_header_id|>
62
+
63
+ """,
64
+ input_variables=["question"],
65
+ )
66
+
67
+ # Chain
68
+ summarize_chain = summarize_prompt | llama3 | StrOutputParser()
69
+
70
+ # Generation prompt
71
+ generate_prompt = PromptTemplate(
72
+ template="""
73
+
74
+ <|begin_of_text|>
75
+
76
+ <|start_header_id|>system<|end_header_id|>
77
+
78
+ You are a fact-checker AI assistant that receives an information from the user, synthesizes web search results for that information, and verify whether the user's information is a fact or possibly a hoax.
79
+ Strictly use the following pieces of web search context to answer the question. If you don't know the answer, just give "Possibly Hoax" verdict. Only make direct references to material if provided in the context.
80
+ Return a JSON output with these keys, with no premable:
81
+ 1. Verdict: choose between "Fact" and "Possibly Hoax"
82
+ 2. Explanation: a short explanation on why the verdict was chosen
83
+ If the context does not relate with the information provided by user, you can give "Possibly Hoax" result and tell the user that based on web search, it seems that the provided information is a false information.
84
+
85
+ <|eot_id|>
86
+
87
+ <|start_header_id|>user<|end_header_id|>
88
+
89
+ User Information: {question}
90
+ Web Search Context: {context}
91
+ JSON Verdict and Explanation:
92
+
93
+ <|eot_id|>
94
+
95
+ <|start_header_id|>assistant<|end_header_id|>
96
+ """,
97
+ input_variables=["question", "context"],
98
+ )
99
+
100
+ # Chain
101
+ generate_chain = generate_prompt | llama3_json | JsonOutputParser()
102
+
103
+ # Full Flow Function
104
+ def fact_check_flow(user_question):
105
+ # Step 2: Transform question into search query keyword
106
+ keyword = query_chain.invoke({"question": user_question})["query"]
107
+
108
+ # Step 3 & 4: Google search and scrape results
109
+ context_data = search_and_scrape(keyword)
110
+
111
+ final_markdown = []
112
+ for results in context_data:
113
+ final_markdown.append(results['markdown'])
114
+
115
+ final_markdown = ' '.join(final_markdown)
116
+
117
+ context = summarize_chain.invoke({"question": final_markdown})
118
+
119
+ # Step 5: Use scraped data as context and run generate chain
120
+
121
+ final_response = generate_chain.invoke({"question": user_question, "context": context})
122
+
123
+ return final_response
124
+
125
+ # Example Use
126
+ # user_question = "biden is not joining election in 2024"
127
+ # result = fact_check_flow(user_question)
128
+ # print(result)
129
+
130
+ demo = gr.Interface(fn=fact_check_flow, inputs="textbox", outputs="textbox")
131
+
132
+ if __name__ == "__main__":
133
+ demo.launch()