import streamlit as st from smolagents import CodeAgent, DuckDuckGoSearchTool, HfApiModel, ManagedAgent, VisitWebpageTool, tool from sqlalchemy import ( create_engine, MetaData, Table, Column, String, Integer, Float, insert, inspect, text, ) engine = create_engine("sqlite:///:memory:") metadata_obj = MetaData() # create city SQL table table_name = "receipts" receipts = Table( table_name, metadata_obj, Column("receipt_id", Integer, primary_key=True), Column("customer_name", String(16), primary_key=True), Column("price", Float), Column("tip", Float), ) metadata_obj.create_all(engine) rows = [ {"receipt_id": 1, "customer_name": "Alan Payne", "price": 12.06, "tip": 1.20}, {"receipt_id": 2, "customer_name": "Alex Mason", "price": 23.86, "tip": 0.24}, {"receipt_id": 3, "customer_name": "Woodrow Wilson", "price": 53.43, "tip": 5.43}, {"receipt_id": 4, "customer_name": "Margaret James", "price": 21.11, "tip": 1.00}, ] for row in rows: stmt = insert(receipts).values(**row) with engine.begin() as connection: cursor = connection.execute(stmt) inspector = inspect(engine) columns_info = [(col["name"], col["type"]) for col in inspector.get_columns("receipts")] table_description = "Columns:\n" + "\n".join([f" - {name}: {col_type}" for name, col_type in columns_info]) print(table_description) @tool def sql_engine(query: str) -> str: """ Allows you to perform SQL queries on the table. Returns a string representation of the result. The table is named 'receipts'. Its description is as follows: Columns: - receipt_id: INTEGER - customer_name: VARCHAR(16) - price: FLOAT - tip: FLOAT Args: query: The query to perform. This should be correct SQL. """ output = "" with engine.connect() as con: rows = con.execute(text(query)) for row in rows: output += "\n" + str(row) return output sql_agent = CodeAgent( tools=[sql_engine], model=HfApiModel("meta-llama/Meta-Llama-3.1-8B-Instruct"), ) managed_sql_agent = ManagedAgent( agent=sql_agent, name="sql search", description="Runs SQL queries. Give it your query as an argument. Also, this agent should provide the actual query it ran.", ) manager_agent = CodeAgent( tools=[], model=HfApiModel(model_id = "Qwen/Qwen2.5-Coder-32B-Instruct"), managed_agents=[managed_web_agent], additional_authorized_imports=['pyparsing', 'matplotlib', 'datetime', 'statistics', 'bs4', 'request', 'unicodedata', 'queue', 'time', 'collections', 're', 'math', 'stat', 'random', 'itertools'], ) # Function to log agent actions def log_agent_action(prompt, result, agent_name): st.write(f"### Agent Activity ({agent_name}):") st.write("**Prompt Sent to Agent:**") st.code(prompt, language="text") st.write("**Agent Output:**") st.code(result, language="text") # Streamlit app title st.title("AI SQL Assistant Agent researching your query and summarizing it") # App description st.write("Generate SQL queries using human speech powered by SmolAgents.") # Input blog topic or prompt prompt = st.text_area("Enter the your prompt:", placeholder="E.g., Can you give me the name of the client who got the most expensive receipt?") # Button to generate blog content if st.button("Generate Summary"): if prompt: with st.spinner("Generating content..."): try: # Run the blog agent with the given prompt result = manager_agent.run(prompt) # Display the generated blog content st.subheader("Generated Summary:") st.write(result) # Log backend activity log_agent_action(prompt, result, "SQL Agent") except Exception as e: st.error(f"An error occurred: {e}") else: st.warning("Please enter a blog topic or prompt to proceed.") # Footer st.markdown("---") st.caption("Powered by SmolAgents, and Streamlit")