Spaces:
Running
Running
import streamlit as st | |
from smolagents import CodeAgent, DuckDuckGoSearchTool, HfApiModel, ManagedAgent, VisitWebpageTool, tool | |
from sqlalchemy import ( | |
create_engine, | |
MetaData, | |
Table, | |
Column, | |
String, | |
Integer, | |
Float, | |
insert, | |
inspect, | |
text, | |
) | |
engine = create_engine("sqlite:///:memory:") | |
metadata_obj = MetaData() | |
# create city SQL table | |
table_name = "receipts" | |
receipts = Table( | |
table_name, | |
metadata_obj, | |
Column("receipt_id", Integer, primary_key=True), | |
Column("customer_name", String(16), primary_key=True), | |
Column("price", Float), | |
Column("tip", Float), | |
) | |
metadata_obj.create_all(engine) | |
rows = [ | |
{"receipt_id": 1, "customer_name": "Alan Payne", "price": 12.06, "tip": 1.20}, | |
{"receipt_id": 2, "customer_name": "Alex Mason", "price": 23.86, "tip": 0.24}, | |
{"receipt_id": 3, "customer_name": "Woodrow Wilson", "price": 53.43, "tip": 5.43}, | |
{"receipt_id": 4, "customer_name": "Margaret James", "price": 21.11, "tip": 1.00}, | |
] | |
for row in rows: | |
stmt = insert(receipts).values(**row) | |
with engine.begin() as connection: | |
cursor = connection.execute(stmt) | |
inspector = inspect(engine) | |
columns_info = [(col["name"], col["type"]) for col in inspector.get_columns("receipts")] | |
table_description = "Columns:\n" + "\n".join([f" - {name}: {col_type}" for name, col_type in columns_info]) | |
print(table_description) | |
def sql_engine(query: str) -> str: | |
""" | |
Allows you to perform SQL queries on the table. Returns a string representation of the result. | |
The table is named 'receipts'. Its description is as follows: | |
Columns: | |
- receipt_id: INTEGER | |
- customer_name: VARCHAR(16) | |
- price: FLOAT | |
- tip: FLOAT | |
Args: | |
query: The query to perform. This should be correct SQL. | |
""" | |
output = "" | |
with engine.connect() as con: | |
rows = con.execute(text(query)) | |
for row in rows: | |
output += "\n" + str(row) | |
return output | |
sql_agent = CodeAgent( | |
tools=[sql_engine], | |
model=HfApiModel(), | |
# additional_authorized_imports=['pyparsing', 'matplotlib', 'datetime', 'statistics', 'bs4', 'request', 'unicodedata', 'queue', 'time', 'collections', 're', 'math', 'stat', 'random', 'itertools'], | |
) | |
# Function to log agent actions | |
def log_agent_action(prompt, result, agent_name): | |
st.write(f"### Agent Activity ({agent_name}):") | |
st.write("**Prompt Sent to Agent:**") | |
st.code(prompt, language="text") | |
st.write("**Agent Output:**") | |
st.code(result, language="text") | |
# Streamlit app title | |
st.title("AI SQL Agent researching your query and summarizing it") | |
# App description | |
st.write("Generate SQL queries using human speech powered by SmolAgents.") | |
# Input blog topic or prompt | |
prompt = st.text_area("Enter the your prompt:", placeholder="E.g., Can you give me the name of the client who got the most expensive receipt?") | |
# Button to generate blog content | |
if st.button("Generate Summary"): | |
if prompt: | |
with st.spinner("Generating content..."): | |
try: | |
# Run the blog agent with the given prompt | |
result = sql_agent.run(prompt) | |
# Display the generated blog content | |
st.subheader("Generated Summary:") | |
st.write(result) | |
# Log backend activity | |
log_agent_action(prompt, result, "SQL Agent") | |
except Exception as e: | |
st.error(f"An error occurred: {e}") | |
else: | |
st.warning("Please enter a blog topic or prompt to proceed.") | |
# Footer | |
st.markdown("---") | |
st.caption("Powered by SmolAgents, and Streamlit") | |