text_to_sql / app.py
matterattetatte's picture
Update app.py
da52af7 verified
import streamlit as st
from smolagents import CodeAgent, DuckDuckGoSearchTool, HfApiModel, ManagedAgent, VisitWebpageTool, tool
from sqlalchemy import (
create_engine,
MetaData,
Table,
Column,
String,
Integer,
Float,
insert,
inspect,
text,
)
engine = create_engine("sqlite:///:memory:")
metadata_obj = MetaData()
# create city SQL table
table_name = "receipts"
receipts = Table(
table_name,
metadata_obj,
Column("receipt_id", Integer, primary_key=True),
Column("customer_name", String(16), primary_key=True),
Column("price", Float),
Column("tip", Float),
)
metadata_obj.create_all(engine)
rows = [
{"receipt_id": 1, "customer_name": "Alan Payne", "price": 12.06, "tip": 1.20},
{"receipt_id": 2, "customer_name": "Alex Mason", "price": 23.86, "tip": 0.24},
{"receipt_id": 3, "customer_name": "Woodrow Wilson", "price": 53.43, "tip": 5.43},
{"receipt_id": 4, "customer_name": "Margaret James", "price": 21.11, "tip": 1.00},
]
for row in rows:
stmt = insert(receipts).values(**row)
with engine.begin() as connection:
cursor = connection.execute(stmt)
inspector = inspect(engine)
columns_info = [(col["name"], col["type"]) for col in inspector.get_columns("receipts")]
table_description = "Columns:\n" + "\n".join([f" - {name}: {col_type}" for name, col_type in columns_info])
print(table_description)
@tool
def sql_engine(query: str) -> str:
"""
Allows you to perform SQL queries on the table. Returns a string representation of the result.
The table is named 'receipts'. Its description is as follows:
Columns:
- receipt_id: INTEGER
- customer_name: VARCHAR(16)
- price: FLOAT
- tip: FLOAT
Args:
query: The query to perform. This should be correct SQL.
"""
output = ""
with engine.connect() as con:
rows = con.execute(text(query))
for row in rows:
output += "\n" + str(row)
return output
sql_agent = CodeAgent(
tools=[sql_engine],
model=HfApiModel(),
# additional_authorized_imports=['pyparsing', 'matplotlib', 'datetime', 'statistics', 'bs4', 'request', 'unicodedata', 'queue', 'time', 'collections', 're', 'math', 'stat', 'random', 'itertools'],
)
# Function to log agent actions
def log_agent_action(prompt, result, agent_name):
st.write(f"### Agent Activity ({agent_name}):")
st.write("**Prompt Sent to Agent:**")
st.code(prompt, language="text")
st.write("**Agent Output:**")
st.code(result, language="text")
# Streamlit app title
st.title("AI SQL Agent researching your query and summarizing it")
# App description
st.write("Generate SQL queries using human speech powered by SmolAgents.")
# Input blog topic or prompt
prompt = st.text_area("Enter the your prompt:", placeholder="E.g., Can you give me the name of the client who got the most expensive receipt?")
# Button to generate blog content
if st.button("Generate Summary"):
if prompt:
with st.spinner("Generating content..."):
try:
# Run the blog agent with the given prompt
result = sql_agent.run(prompt)
# Display the generated blog content
st.subheader("Generated Summary:")
st.write(result)
# Log backend activity
log_agent_action(prompt, result, "SQL Agent")
except Exception as e:
st.error(f"An error occurred: {e}")
else:
st.warning("Please enter a blog topic or prompt to proceed.")
# Footer
st.markdown("---")
st.caption("Powered by SmolAgents, and Streamlit")