Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from smolagents.agents import ToolCallingAgent
|
3 |
+
from smolagents import tool, LiteLLMModel
|
4 |
+
from typing import Optional
|
5 |
+
import cv2
|
6 |
+
import pytesseract
|
7 |
+
from PIL import Image
|
8 |
+
import io
|
9 |
+
import numpy as np
|
10 |
+
import base64
|
11 |
+
|
12 |
+
# Define the LiteLLMModel with OpenAI key
|
13 |
+
model = LiteLLMModel(model_id="gpt-4o", api_key="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")
|
14 |
+
|
15 |
+
@tool
|
16 |
+
def extract_components(image_data_base64: str) -> str:
|
17 |
+
"""
|
18 |
+
Extract components from a web design image.
|
19 |
+
|
20 |
+
Args:
|
21 |
+
image_data_base64: The image data in base64 string format.
|
22 |
+
|
23 |
+
Returns:
|
24 |
+
A string describing the components found in the image.
|
25 |
+
"""
|
26 |
+
image_data = base64.b64decode(image_data_base64)
|
27 |
+
image = Image.open(io.BytesIO(image_data))
|
28 |
+
gray = cv2.cvtColor(np.array(image), cv2.COLOR_BGR2GRAY)
|
29 |
+
components = pytesseract.image_to_string(gray)
|
30 |
+
return components
|
31 |
+
|
32 |
+
@tool
|
33 |
+
def generate_code(components: str) -> str:
|
34 |
+
"""
|
35 |
+
Generate code for the given components.
|
36 |
+
|
37 |
+
Args:
|
38 |
+
components: A string describing the components.
|
39 |
+
|
40 |
+
Returns:
|
41 |
+
The generated code for the components.
|
42 |
+
"""
|
43 |
+
# This is a placeholder implementation. You can replace it with actual code generation logic.
|
44 |
+
return f"Generated code for components: {components}"
|
45 |
+
|
46 |
+
# Define the ToolCallingAgent
|
47 |
+
agent = ToolCallingAgent(tools=[extract_components, generate_code], model=model)
|
48 |
+
|
49 |
+
# Streamlit app title
|
50 |
+
st.title("Web Design Component Extractor")
|
51 |
+
|
52 |
+
# File uploader for the web design image
|
53 |
+
uploaded_file = st.file_uploader("Upload a web design image", type=["png", "jpg", "jpeg"])
|
54 |
+
|
55 |
+
# Button to run the agent
|
56 |
+
if st.button("Extract and Generate Code"):
|
57 |
+
if uploaded_file is not None:
|
58 |
+
image_data = uploaded_file.read()
|
59 |
+
image_data_base64 = base64.b64encode(image_data).decode('utf-8')
|
60 |
+
components = agent.run(f"extract_components {image_data_base64}")
|
61 |
+
code = agent.run(f"generate_code {components}")
|
62 |
+
st.write("Extracted Components:", components)
|
63 |
+
st.write("Generated Code:", code)
|
64 |
+
else:
|
65 |
+
st.write("Please upload an image.")
|