import gradio as gr from PIL import Image import requests import hopsworks import joblib import pandas as pd project = hopsworks.login() fs = project.get_feature_store() mr = project.get_model_registry() model = mr.get_model("wine_model", version=1) model_dir = model.download() model = joblib.load(model_dir + "/wine_model.pkl") print("Model downloaded") def wine(type,fixed_acidity,volatile_acidity,citric_acid,residual_sugar,chlorides,free_sulfur_dioxide,total_sulfur_dioxide,density,ph,sulphates,alcohol): print("Calling function") df = pd.DataFrame([[type,fixed_acidity,volatile_acidity,citric_acid,residual_sugar,chlorides,free_sulfur_dioxide,total_sulfur_dioxide,density,ph,sulphates,alcohol]], columns=['type','fixed_acidity','volatile_acidity','citric_acid','residual_sugar','chlorides','free_sulfur_dioxide','total_sulfur_dioxide','density','ph','sulphates','alcohol']) print("Predicting") print(df) # 'res' is a list of predictions returned as the label. res = model.predict(df) # We add '[0]' to the result of the transformed 'res', because 'res' is a list, and we only want # the first element. # print("Res: {0}").format(res) print(res) # flower_url = "https://raw.githubusercontent.com/featurestoreorg/serverless-ml-course/main/src/01-module/assets/" + res[0] + ".png" # img = Image.open(requests.get(flower_url, stream=True).raw) return res[0] demo = gr.Interface( fn=wine, title="Wine Predictive Analytics", description="Experiment with wine features to predict which quality of wine it is.", allow_flagging="never", inputs=[ gr.Number(value=0, label="type 0 for white, 1 for red"), gr.Number(value=7.0, label="fixed_acidity"), gr.Number(value=0.0, label="volatile_acidity"), gr.Number(value=0.0, label="citric_acid"), gr.Number(value=5.0, label="residual_sugar"), gr.Number(value=0.0, label="chlorides"), gr.Number(value=30.0, label="free_sulfur_dioxide"), gr.Number(value=115.0, label="total_sulfur_dioxide"), gr.Number(value=1.0, label="density"), gr.Number(value=3.0, label="ph"), gr.Number(value=0.0, label="sulphates"), gr.Number(value=10.0, label="alcohol") ], outputs=gr.Label("Predicted Quality") ) demo.launch(debug=True)