wine / app.py
matteocirca's picture
Update app
ccbece9
raw
history blame
2.43 kB
import gradio as gr
from PIL import Image
import requests
import hopsworks
import joblib
import pandas as pd
project = hopsworks.login()
fs = project.get_feature_store()
mr = project.get_model_registry()
model = mr.get_model("wine_model", version=1)
model_dir = model.download()
model = joblib.load(model_dir + "/wine_model.pkl")
print("Model downloaded")
def wine(_type,fixed_acidity,volatile_acidity,citric_acid,residual_sugar,chlorides,free_sulfur_dioxide,total_sulfur_dioxide,density,pH,sulphates,alcohol,quality):
print("Calling function")
df = pd.DataFrame([[_type,fixed_acidity,volatile_acidity,citric_acid,residual_sugar,chlorides,free_sulfur_dioxide,total_sulfur_dioxide,density,pH,sulphates,alcohol,quality]],
columns=['_type','fixed_acidity','volatile_acidity','citric_acid','residual_sugar','chlorides','free_sulfur_dioxide','total_sulfur_dioxide','density','pH','sulphates','alcohol','quality'])
print("Predicting")
print(df)
# 'res' is a list of predictions returned as the label.
res = model.predict(df)
# We add '[0]' to the result of the transformed 'res', because 'res' is a list, and we only want
# the first element.
# print("Res: {0}").format(res)
print(res)
# flower_url = "https://raw.githubusercontent.com/featurestoreorg/serverless-ml-course/main/src/01-module/assets/" + res[0] + ".png"
# img = Image.open(requests.get(flower_url, stream=True).raw)
return res
demo = gr.Interface(
fn=wine,
title="Wine Predictive Analytics",
description="Experiment with wine features to predict which quality of wine it is.",
allow_flagging="never",
inputs=[
gr.Number(value=0, label="_type 0 for white, 1 for red"),
gr.Number(value=7.0, label="fixed_acidity"),
gr.Number(value=0.0, label="volatile_acidity"),
gr.Number(value=0.0, label="citric_acid"),
gr.Number(value=5.0, label="residual_sugar"),
gr.Number(value=0.0, label="chlorides"),
gr.Number(value=30.0, label="free_sulfur_dioxide"),
gr.Number(value=115.0, label="total_sulfur_dioxide"),
gr.Number(value=1.0, label="density"),
gr.Number(value=3.0, label="pH"),
gr.Number(value=0.0, label="sulphates"),
gr.Number(value=10.0, label="alcohol")
],
outputs=gr.outputs.Label(label="Predicted Wine Quality"),
)
demo.launch(debug=True)