File size: 1,633 Bytes
c83b1e4
 
 
f5262bf
 
 
 
 
c83b1e4
 
 
f5262bf
 
 
 
c83b1e4
 
f5262bf
c83b1e4
f5262bf
c83b1e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
import os


# 获取环境变量中的 token
hf_token = os.getenv("HF_TOKEN")

# 加载模型和分词器
model_path = "meta-llama/Llama-3.2-1B-Instruct-QLORA_INT4_EO8"
tokenizer = AutoTokenizer.from_pretrained(
    model_path,
    token=hf_token
)
model = AutoModelForCausalLM.from_pretrained(
    model_path,
    token=hf_token,
    device_map="auto",
    load_in_4bit=True,  # 启用4-bit量化加载
)

def generate_text(prompt, max_length=512, temperature=0.7, top_p=0.9):
    # 准备输入
    inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
    
    # 生成回答
    with torch.no_grad():
        outputs = model.generate(
            **inputs,
            max_length=max_length,
            temperature=temperature,
            top_p=top_p,
            pad_token_id=tokenizer.pad_token_id,
            eos_token_id=tokenizer.eos_token_id,
        )
    
    # 解码输出
    response = tokenizer.decode(outputs[0], skip_special_tokens=True)
    return response

# 创建Gradio界面
iface = gr.Interface(
    fn=generate_text,
    inputs=[
        gr.Textbox(lines=5, label="输入提示"),
        gr.Slider(minimum=64, maximum=1024, value=512, label="最大长度"),
        gr.Slider(minimum=0.1, maximum=1.0, value=0.7, label="温度"),
        gr.Slider(minimum=0.1, maximum=1.0, value=0.9, label="Top-p"),
    ],
    outputs=gr.Textbox(lines=5, label="生成的文本"),
    title="Llama-3.2-1B-Instruct 演示",
    description="输入提示,获取AI生成的回答",
)

# 启动应用
iface.launch()