Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -11,12 +11,9 @@ import pickle
|
|
11 |
import hdbscan
|
12 |
|
13 |
|
14 |
-
|
15 |
def predict_ann(age, workclass, education, occupation, race, gender, capital_gain, capital_loss, hours_per_week, native_country):
|
16 |
-
|
17 |
-
# "age": [age], "workclass":[workclass], "educational-num":[education], "marital-status":[marital_status], "occupation":[occupation],
|
18 |
-
# "relationship":[relationship], "race":[race], "gender":[gender], "capital-gain":[capital_gain], "capital-loss":[capital_loss],
|
19 |
-
# "hours-per-week":[hours_per_week], "native-country":[native_country]}
|
20 |
columns = { "0":[0],
|
21 |
"age": [age], "workclass":[workclass], "educational-num":[education], "occupation":[occupation],
|
22 |
"race":[race], "gender":[gender], "capital-gain":[capital_gain], "capital-loss":[capital_loss],
|
@@ -24,19 +21,14 @@ def predict_ann(age, workclass, education, occupation, race, gender, capital_gai
|
|
24 |
df = pd.DataFrame(data=columns)
|
25 |
fixed_features = cleaning_features(df,race,False)
|
26 |
print(fixed_features)
|
27 |
-
|
28 |
-
# ann_model = pickle.load(ann_model_file)
|
29 |
-
scaler = StandardScaler()
|
30 |
ann_model = load_model('ann_model.h5')
|
31 |
prediction = ann_model.predict(fixed_features)
|
32 |
-
|
33 |
return "Income >50K" if prediction == 1 else "Income <=50K"
|
34 |
|
35 |
def predict_rf(age, workclass, education, occupation, race, gender, capital_gain, capital_loss, hours_per_week, native_country):
|
36 |
-
|
37 |
-
# "age": [age], "workclass":[workclass], "educational-num":[education], "marital-status":[marital_status], "occupation":[occupation],
|
38 |
-
# "relationship":[relationship], "race":[race], "gender":[gender], "capital-gain":[capital_gain], "capital-loss":[capital_loss],
|
39 |
-
# "hours-per-week":[hours_per_week], "native-country":[native_country]}
|
40 |
columns = {
|
41 |
"age": [age], "workclass":[workclass], "educational-num":[education], "occupation":[occupation],
|
42 |
"race":[race], "gender":[gender], "capital-gain":[capital_gain], "capital-loss":[capital_loss],
|
@@ -44,12 +36,9 @@ def predict_rf(age, workclass, education, occupation, race, gender, capital_ga
|
|
44 |
df = pd.DataFrame(data=columns)
|
45 |
fixed_features = cleaning_features(df,race,False)
|
46 |
print(fixed_features)
|
47 |
-
|
48 |
-
# ann_model = pickle.load(ann_model_file)
|
49 |
-
scaler = StandardScaler()
|
50 |
rf_model = pickle.load(open('rf_model.pkl', 'rb'))
|
51 |
-
|
52 |
-
# prediction = 1
|
53 |
return "Income >50K" if prediction == 1 else "Income <=50K"
|
54 |
|
55 |
def predict_hb(age, workclass, education, occupation, race, gender, capital_gain, capital_loss, hours_per_week, native_country):
|
@@ -66,23 +55,23 @@ def predict_hb(age, workclass, education, occupation, race, gender, capital_ga
|
|
66 |
df = pd.DataFrame(data=columns)
|
67 |
fixed_features = cleaning_features(df,race,True)
|
68 |
print(fixed_features)
|
69 |
-
|
70 |
-
|
71 |
-
scaler = StandardScaler()
|
72 |
-
X = scaler.fit_transform(fixed_features)
|
73 |
|
74 |
-
clusterer = hdbscan.HDBSCAN(
|
75 |
-
min_cluster_size=220,
|
76 |
-
min_samples=117,
|
77 |
-
metric='euclidean',
|
78 |
-
cluster_selection_method='eom',
|
79 |
-
prediction_data=True,
|
80 |
-
cluster_selection_epsilon=0.28479667859306007
|
81 |
-
)
|
82 |
|
83 |
-
prediction = clusterer.fit_predict(X)
|
84 |
-
filename = 'hdbscan_model.pkl'
|
85 |
-
pickle.dump(clusterer, open(filename, 'wb'))
|
86 |
|
87 |
return f"Predicted Cluster (HDBSCAN): {prediction[-1]}"
|
88 |
|
@@ -148,9 +137,9 @@ def cleaning_features(data,race,hdbscan):
|
|
148 |
|
149 |
data = pca(data)
|
150 |
if(hdbscan):
|
151 |
-
df_transformed = pd.read_csv('dataset.csv')
|
152 |
-
X = df_transformed.drop('income', axis=1)
|
153 |
-
data = pd.concat([X, data], ignore_index=True)
|
154 |
data['capital-gain'] = np.log1p(data['capital-gain'])
|
155 |
data['capital-loss'] = np.log1p(data['capital-loss'])
|
156 |
scaler = joblib.load("robust_scaler.pkl")
|
|
|
11 |
import hdbscan
|
12 |
|
13 |
|
14 |
+
|
15 |
def predict_ann(age, workclass, education, occupation, race, gender, capital_gain, capital_loss, hours_per_week, native_country):
|
16 |
+
|
|
|
|
|
|
|
17 |
columns = { "0":[0],
|
18 |
"age": [age], "workclass":[workclass], "educational-num":[education], "occupation":[occupation],
|
19 |
"race":[race], "gender":[gender], "capital-gain":[capital_gain], "capital-loss":[capital_loss],
|
|
|
21 |
df = pd.DataFrame(data=columns)
|
22 |
fixed_features = cleaning_features(df,race,False)
|
23 |
print(fixed_features)
|
24 |
+
|
|
|
|
|
25 |
ann_model = load_model('ann_model.h5')
|
26 |
prediction = ann_model.predict(fixed_features)
|
27 |
+
|
28 |
return "Income >50K" if prediction == 1 else "Income <=50K"
|
29 |
|
30 |
def predict_rf(age, workclass, education, occupation, race, gender, capital_gain, capital_loss, hours_per_week, native_country):
|
31 |
+
|
|
|
|
|
|
|
32 |
columns = {
|
33 |
"age": [age], "workclass":[workclass], "educational-num":[education], "occupation":[occupation],
|
34 |
"race":[race], "gender":[gender], "capital-gain":[capital_gain], "capital-loss":[capital_loss],
|
|
|
36 |
df = pd.DataFrame(data=columns)
|
37 |
fixed_features = cleaning_features(df,race,False)
|
38 |
print(fixed_features)
|
39 |
+
|
|
|
|
|
40 |
rf_model = pickle.load(open('rf_model.pkl', 'rb'))
|
41 |
+
|
|
|
42 |
return "Income >50K" if prediction == 1 else "Income <=50K"
|
43 |
|
44 |
def predict_hb(age, workclass, education, occupation, race, gender, capital_gain, capital_loss, hours_per_week, native_country):
|
|
|
55 |
df = pd.DataFrame(data=columns)
|
56 |
fixed_features = cleaning_features(df,race,True)
|
57 |
print(fixed_features)
|
58 |
+
hdb_model = pickle.load(open('hdbscan_model.pkl', 'rb'))
|
59 |
+
prediction = hdb_model.approximate_predict(fixed_features)
|
60 |
+
# scaler = StandardScaler()
|
61 |
+
# X = scaler.fit_transform(fixed_features)
|
62 |
|
63 |
+
# clusterer = hdbscan.HDBSCAN(
|
64 |
+
# min_cluster_size=220,
|
65 |
+
# min_samples=117,
|
66 |
+
# metric='euclidean',
|
67 |
+
# cluster_selection_method='eom',
|
68 |
+
# prediction_data=True,
|
69 |
+
# cluster_selection_epsilon=0.28479667859306007
|
70 |
+
# )
|
71 |
|
72 |
+
# prediction = clusterer.fit_predict(X)
|
73 |
+
# filename = 'hdbscan_model.pkl'
|
74 |
+
# pickle.dump(clusterer, open(filename, 'wb'))
|
75 |
|
76 |
return f"Predicted Cluster (HDBSCAN): {prediction[-1]}"
|
77 |
|
|
|
137 |
|
138 |
data = pca(data)
|
139 |
if(hdbscan):
|
140 |
+
# df_transformed = pd.read_csv('dataset.csv')
|
141 |
+
# X = df_transformed.drop('income', axis=1)
|
142 |
+
# data = pd.concat([X, data], ignore_index=True)
|
143 |
data['capital-gain'] = np.log1p(data['capital-gain'])
|
144 |
data['capital-loss'] = np.log1p(data['capital-loss'])
|
145 |
scaler = joblib.load("robust_scaler.pkl")
|