|
import os |
|
import subprocess |
|
import signal |
|
os.environ["GRADIO_ANALYTICS_ENABLED"] = "False" |
|
import gradio as gr |
|
import tempfile |
|
|
|
from huggingface_hub import HfApi, ModelCard, whoami |
|
from gradio_huggingfacehub_search import HuggingfaceHubSearch |
|
from pathlib import Path |
|
from textwrap import dedent |
|
from apscheduler.schedulers.background import BackgroundScheduler |
|
|
|
|
|
|
|
HF_TOKEN = os.environ.get("HF_TOKEN") |
|
CONVERSION_SCRIPT = "./llama.cpp/convert_hf_to_gguf.py" |
|
|
|
|
|
def escape(s: str) -> str: |
|
s = s.replace("&", "&") |
|
s = s.replace("<", "<") |
|
s = s.replace(">", ">") |
|
s = s.replace('"', """) |
|
s = s.replace("\n", "<br/>") |
|
return s |
|
|
|
def generate_importance_matrix(model_path: str, train_data_path: str, output_path: str): |
|
imatrix_command = [ |
|
"./llama.cpp/llama-imatrix", |
|
"-m", model_path, |
|
"-f", train_data_path, |
|
"-ngl", "99", |
|
"--output-frequency", "10", |
|
"-o", output_path, |
|
] |
|
|
|
if not os.path.isfile(model_path): |
|
raise Exception(f"Model file not found: {model_path}") |
|
|
|
print("Running imatrix command...") |
|
process = subprocess.Popen(imatrix_command, shell=False) |
|
|
|
try: |
|
process.wait(timeout=60) |
|
except subprocess.TimeoutExpired: |
|
print("Imatrix computation timed out. Sending SIGINT to allow graceful termination...") |
|
process.send_signal(signal.SIGINT) |
|
try: |
|
process.wait(timeout=5) |
|
except subprocess.TimeoutExpired: |
|
print("Imatrix proc still didn't term. Forecfully terming process...") |
|
process.kill() |
|
|
|
print("Importance matrix generation completed.") |
|
|
|
def split_upload_model(model_path: str, outdir: str, repo_id: str, oauth_token: gr.OAuthToken | None, split_max_tensors=256, split_max_size=None): |
|
print(f"Model path: {model_path}") |
|
print(f"Output dir: {outdir}") |
|
|
|
if oauth_token.token is None: |
|
raise ValueError("You have to be logged in.") |
|
|
|
split_cmd = [ |
|
"./llama.cpp/llama-gguf-split", |
|
"--split", |
|
] |
|
if split_max_size: |
|
split_cmd.append("--split-max-size") |
|
split_cmd.append(split_max_size) |
|
else: |
|
split_cmd.append("--split-max-tensors") |
|
split_cmd.append(str(split_max_tensors)) |
|
|
|
|
|
model_path_prefix = '.'.join(model_path.split('.')[:-1]) |
|
split_cmd.append(model_path) |
|
split_cmd.append(model_path_prefix) |
|
|
|
print(f"Split command: {split_cmd}") |
|
|
|
result = subprocess.run(split_cmd, shell=False, capture_output=True, text=True) |
|
print(f"Split command stdout: {result.stdout}") |
|
print(f"Split command stderr: {result.stderr}") |
|
|
|
if result.returncode != 0: |
|
stderr_str = result.stderr.decode("utf-8") |
|
raise Exception(f"Error splitting the model: {stderr_str}") |
|
print("Model split successfully!") |
|
|
|
|
|
if os.path.exists(model_path): |
|
os.remove(model_path) |
|
|
|
model_file_prefix = model_path_prefix.split('/')[-1] |
|
print(f"Model file name prefix: {model_file_prefix}") |
|
sharded_model_files = [f for f in os.listdir(outdir) if f.startswith(model_file_prefix) and f.endswith(".gguf")] |
|
if sharded_model_files: |
|
print(f"Sharded model files: {sharded_model_files}") |
|
api = HfApi(token=oauth_token.token) |
|
for file in sharded_model_files: |
|
file_path = os.path.join(outdir, file) |
|
print(f"Uploading file: {file_path}") |
|
try: |
|
api.upload_file( |
|
path_or_fileobj=file_path, |
|
path_in_repo=file, |
|
repo_id=repo_id, |
|
) |
|
except Exception as e: |
|
raise Exception(f"Error uploading file {file_path}: {e}") |
|
else: |
|
raise Exception("No sharded files found.") |
|
|
|
print("Sharded model has been uploaded successfully!") |
|
|
|
def process_model(model_id, q_method, use_imatrix, imatrix_q_method, private_repo, train_data_file, split_model, split_max_tensors, split_max_size, oauth_token: gr.OAuthToken | None): |
|
if oauth_token is None or oauth_token.token is None: |
|
raise ValueError("You must be logged in to use GGUF-my-repo") |
|
model_name = model_id.split('/')[-1] |
|
|
|
try: |
|
api = HfApi(token=oauth_token.token) |
|
|
|
dl_pattern = ["*.md", "*.json", "*.model"] |
|
|
|
pattern = ( |
|
"*.safetensors" |
|
if any( |
|
file.path.endswith(".safetensors") |
|
for file in api.list_repo_tree( |
|
repo_id=model_id, |
|
recursive=True, |
|
) |
|
) |
|
else "*.bin" |
|
) |
|
|
|
dl_pattern += [pattern] |
|
|
|
if not os.path.exists("downloads"): |
|
os.makedirs("downloads") |
|
|
|
if not os.path.exists("outputs"): |
|
os.makedirs("outputs") |
|
|
|
with tempfile.TemporaryDirectory(dir="outputs") as outdir: |
|
fp16 = str(Path(outdir)/f"{model_name}.fp16.gguf") |
|
|
|
with tempfile.TemporaryDirectory(dir="downloads") as tmpdir: |
|
|
|
local_dir = Path(tmpdir)/model_name |
|
print(local_dir) |
|
api.snapshot_download(repo_id=model_id, local_dir=local_dir, local_dir_use_symlinks=False, allow_patterns=dl_pattern) |
|
print("Model downloaded successfully!") |
|
print(f"Current working directory: {os.getcwd()}") |
|
print(f"Model directory contents: {os.listdir(local_dir)}") |
|
|
|
config_dir = local_dir/"config.json" |
|
adapter_config_dir = local_dir/"adapter_config.json" |
|
if os.path.exists(adapter_config_dir) and not os.path.exists(config_dir): |
|
raise Exception('adapter_config.json is present.<br/><br/>If you are converting a LoRA adapter to GGUF, please use <a href="https://huggingface.co./spaces/ggml-org/gguf-my-lora" target="_blank" style="text-decoration:underline">GGUF-my-lora</a>.') |
|
|
|
result = subprocess.run([ |
|
"python", CONVERSION_SCRIPT, local_dir, "--outtype", "f16", "--outfile", fp16 |
|
], shell=False, capture_output=True) |
|
print(result) |
|
if result.returncode != 0: |
|
stderr_str = result.stderr.decode("utf-8") |
|
raise Exception(f"Error converting to fp16: {stderr_str}") |
|
print("Model converted to fp16 successfully!") |
|
print(f"Converted model path: {fp16}") |
|
|
|
imatrix_path = Path(outdir)/"imatrix.dat" |
|
|
|
if use_imatrix: |
|
if train_data_file: |
|
train_data_path = train_data_file.name |
|
else: |
|
train_data_path = "llama.cpp/groups_merged.txt" |
|
|
|
print(f"Training data file path: {train_data_path}") |
|
|
|
if not os.path.isfile(train_data_path): |
|
raise Exception(f"Training data file not found: {train_data_path}") |
|
|
|
generate_importance_matrix(fp16, train_data_path, imatrix_path) |
|
else: |
|
print("Not using imatrix quantization.") |
|
|
|
|
|
quantized_gguf_name = f"{model_name.lower()}-{imatrix_q_method.lower()}-imat.gguf" if use_imatrix else f"{model_name.lower()}-{q_method.lower()}.gguf" |
|
quantized_gguf_path = str(Path(outdir)/quantized_gguf_name) |
|
if use_imatrix: |
|
quantise_ggml = [ |
|
"./llama.cpp/llama-quantize", |
|
"--imatrix", imatrix_path, fp16, quantized_gguf_path, imatrix_q_method |
|
] |
|
else: |
|
quantise_ggml = [ |
|
"./llama.cpp/llama-quantize", |
|
fp16, quantized_gguf_path, q_method |
|
] |
|
result = subprocess.run(quantise_ggml, shell=False, capture_output=True) |
|
if result.returncode != 0: |
|
stderr_str = result.stderr.decode("utf-8") |
|
raise Exception(f"Error quantizing: {stderr_str}") |
|
print(f"Quantized successfully with {imatrix_q_method if use_imatrix else q_method} option!") |
|
print(f"Quantized model path: {quantized_gguf_path}") |
|
|
|
|
|
username = whoami(oauth_token.token)["name"] |
|
new_repo_url = api.create_repo(repo_id=f"{username}/{model_name}-GGUF", exist_ok=True, private=private_repo) |
|
new_repo_id = new_repo_url.repo_id |
|
print("Repo created successfully!", new_repo_url) |
|
|
|
try: |
|
card = ModelCard.load(model_id, token=oauth_token.token) |
|
except: |
|
card = ModelCard("") |
|
if card.data.tags is None: |
|
card.data.tags = [] |
|
card.data.tags.append("llama-cpp") |
|
card.data.tags.append("gguf-my-repo") |
|
card.data.base_model = model_id |
|
card.text = dedent( |
|
f""" |
|
# {new_repo_id} |
|
This model was converted to GGUF format from [`{model_id}`](https://huggingface.co./{model_id}) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co./spaces/ggml-org/gguf-my-repo) space. |
|
Refer to the [original model card](https://huggingface.co./{model_id}) for more details on the model. |
|
|
|
## Use with llama.cpp |
|
Install llama.cpp through brew (works on Mac and Linux) |
|
|
|
```bash |
|
brew install llama.cpp |
|
|
|
``` |
|
Invoke the llama.cpp server or the CLI. |
|
|
|
### CLI: |
|
```bash |
|
llama-cli --hf-repo {new_repo_id} --hf-file {quantized_gguf_name} -p "The meaning to life and the universe is" |
|
``` |
|
|
|
### Server: |
|
```bash |
|
llama-server --hf-repo {new_repo_id} --hf-file {quantized_gguf_name} -c 2048 |
|
``` |
|
|
|
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. |
|
|
|
Step 1: Clone llama.cpp from GitHub. |
|
``` |
|
git clone https://github.com/ggerganov/llama.cpp |
|
``` |
|
|
|
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). |
|
``` |
|
cd llama.cpp && LLAMA_CURL=1 make |
|
``` |
|
|
|
Step 3: Run inference through the main binary. |
|
``` |
|
./llama-cli --hf-repo {new_repo_id} --hf-file {quantized_gguf_name} -p "The meaning to life and the universe is" |
|
``` |
|
or |
|
``` |
|
./llama-server --hf-repo {new_repo_id} --hf-file {quantized_gguf_name} -c 2048 |
|
``` |
|
""" |
|
) |
|
readme_path = Path(outdir)/"README.md" |
|
card.save(readme_path) |
|
|
|
if split_model: |
|
split_upload_model(str(quantized_gguf_path), outdir, new_repo_id, oauth_token, split_max_tensors, split_max_size) |
|
else: |
|
try: |
|
print(f"Uploading quantized model: {quantized_gguf_path}") |
|
api.upload_file( |
|
path_or_fileobj=quantized_gguf_path, |
|
path_in_repo=quantized_gguf_name, |
|
repo_id=new_repo_id, |
|
) |
|
except Exception as e: |
|
raise Exception(f"Error uploading quantized model: {e}") |
|
|
|
if os.path.isfile(imatrix_path): |
|
try: |
|
print(f"Uploading imatrix.dat: {imatrix_path}") |
|
api.upload_file( |
|
path_or_fileobj=imatrix_path, |
|
path_in_repo="imatrix.dat", |
|
repo_id=new_repo_id, |
|
) |
|
except Exception as e: |
|
raise Exception(f"Error uploading imatrix.dat: {e}") |
|
|
|
api.upload_file( |
|
path_or_fileobj=readme_path, |
|
path_in_repo="README.md", |
|
repo_id=new_repo_id, |
|
) |
|
print(f"Uploaded successfully with {imatrix_q_method if use_imatrix else q_method} option!") |
|
|
|
|
|
|
|
return ( |
|
f'<h1>✅ DONE</h1><br/>Find your repo here: <a href="{new_repo_url}" target="_blank" style="text-decoration:underline">{new_repo_id}</a>', |
|
"llama.png", |
|
) |
|
except Exception as e: |
|
return (f'<h1>❌ ERROR</h1><br/><pre style="white-space:pre-wrap;">{escape(str(e))}</pre>', "error.png") |
|
|
|
|
|
css="""/* Custom CSS to allow scrolling */ |
|
.gradio-container {overflow-y: auto;} |
|
""" |
|
|
|
with gr.Blocks(css=css) as demo: |
|
gr.Markdown("You must be logged in to use GGUF-my-repo.") |
|
gr.LoginButton(min_width=250) |
|
|
|
model_id = HuggingfaceHubSearch( |
|
label="Hub Model ID", |
|
placeholder="Search for model id on Huggingface", |
|
search_type="model", |
|
) |
|
|
|
q_method = gr.Dropdown( |
|
["Q2_K", "Q3_K_S", "Q3_K_M", "Q3_K_L", "Q4_0", "Q4_K_S", "Q4_K_M", "Q5_0", "Q5_K_S", "Q5_K_M", "Q6_K", "Q8_0", "F16"], |
|
label="Quantization Method", |
|
info="GGML quantization type", |
|
value="Q4_K_M", |
|
filterable=False, |
|
visible=True |
|
) |
|
|
|
imatrix_q_method = gr.Dropdown( |
|
["IQ3_M", "IQ3_XXS", "Q4_0", "Q4_K_M", "Q4_K_S", "IQ4_NL", "IQ4_XS", "Q5_K_M", "Q5_K_S", "Q6_K", "Q8_0", "F16"], |
|
label="Imatrix Quantization Method", |
|
info="GGML imatrix quants type", |
|
value="IQ4_NL", |
|
filterable=False, |
|
visible=False |
|
) |
|
|
|
use_imatrix = gr.Checkbox( |
|
value=False, |
|
label="Use Imatrix Quantization", |
|
info="Use importance matrix for quantization." |
|
) |
|
|
|
private_repo = gr.Checkbox( |
|
value=False, |
|
label="Private Repo", |
|
info="Create a private repo under your username." |
|
) |
|
|
|
train_data_file = gr.File( |
|
label="Training Data File", |
|
file_types=["txt"], |
|
visible=False |
|
) |
|
|
|
split_model = gr.Checkbox( |
|
value=False, |
|
label="Split Model", |
|
info="Shard the model using gguf-split." |
|
) |
|
|
|
split_max_tensors = gr.Number( |
|
value=256, |
|
label="Max Tensors per File", |
|
info="Maximum number of tensors per file when splitting model.", |
|
visible=False |
|
) |
|
|
|
split_max_size = gr.Textbox( |
|
label="Max File Size", |
|
info="Maximum file size when splitting model (--split-max-size). May leave empty to use the default. Accepted suffixes: M, G. Example: 256M, 5G", |
|
visible=False |
|
) |
|
|
|
def update_visibility(use_imatrix): |
|
return gr.update(visible=not use_imatrix), gr.update(visible=use_imatrix), gr.update(visible=use_imatrix) |
|
|
|
use_imatrix.change( |
|
fn=update_visibility, |
|
inputs=use_imatrix, |
|
outputs=[q_method, imatrix_q_method, train_data_file] |
|
) |
|
|
|
iface = gr.Interface( |
|
fn=process_model, |
|
inputs=[ |
|
model_id, |
|
q_method, |
|
use_imatrix, |
|
imatrix_q_method, |
|
private_repo, |
|
train_data_file, |
|
split_model, |
|
split_max_tensors, |
|
split_max_size, |
|
], |
|
outputs=[ |
|
gr.Markdown(label="output"), |
|
gr.Image(show_label=False), |
|
], |
|
title="Create your own GGUF Quants, blazingly fast ⚡!", |
|
description="The space takes an HF repo as an input, quantizes it and creates a Public repo containing the selected quant under your HF user namespace.", |
|
api_name=False |
|
) |
|
|
|
def update_split_visibility(split_model): |
|
return gr.update(visible=split_model), gr.update(visible=split_model) |
|
|
|
split_model.change( |
|
fn=update_split_visibility, |
|
inputs=split_model, |
|
outputs=[split_max_tensors, split_max_size] |
|
) |
|
|
|
def restart_space(): |
|
HfApi().restart_space(repo_id="ggml-org/gguf-my-repo", token=HF_TOKEN, factory_reboot=True) |
|
|
|
scheduler = BackgroundScheduler() |
|
scheduler.add_job(restart_space, "interval", seconds=21600) |
|
scheduler.start() |
|
|
|
|
|
demo.queue(default_concurrency_limit=1, max_size=5).launch(debug=True, show_api=False) |
|
|