Spaces:
Sleeping
Sleeping
Commit
·
1105152
1
Parent(s):
a7b8c30
Update app
Browse files- .gitattributes +3 -0
- Ambito2.jpg +0 -0
- Clarin2.jpg +3 -0
- Clarin3.jpg +3 -0
- Popular.jpg +3 -0
- app.py +58 -14
.gitattributes
CHANGED
@@ -32,3 +32,6 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
Clarin2.jpg filter=lfs diff=lfs merge=lfs -text
|
36 |
+
Clarin3.jpg filter=lfs diff=lfs merge=lfs -text
|
37 |
+
Popular.jpg filter=lfs diff=lfs merge=lfs -text
|
Ambito2.jpg
ADDED
![]() |
Clarin2.jpg
ADDED
![]() |
Git LFS Details
|
Clarin3.jpg
ADDED
![]() |
Git LFS Details
|
Popular.jpg
ADDED
![]() |
Git LFS Details
|
app.py
CHANGED
@@ -60,6 +60,7 @@ def recortar_notas(imagen_path: str) -> int:
|
|
60 |
|
61 |
noticias(foldername)
|
62 |
segmentacion = f"diarios/predict/{filename}.png"
|
|
|
63 |
recorte1 = f"recorte/{foldername}/nota 0.jpg"
|
64 |
prediccion = f"deteccion/{foldername}/predict/nota 0.jpg"
|
65 |
|
@@ -72,23 +73,66 @@ def recortar_notas(imagen_path: str) -> int:
|
|
72 |
recorte2 = "sin_nota.jpg"
|
73 |
prediccion2 = "sin_nota.jpg"
|
74 |
|
75 |
-
return
|
76 |
|
77 |
def noticias(carpeta):
|
78 |
nombre = carpeta
|
79 |
-
model = YOLO("detect
|
80 |
results = model.predict(source=f"recorte/{nombre}", save=True, save_txt=True,project=f"deteccion/{nombre}", conf=0.75) # save plotted images
|
81 |
return print(f"Imagen {nombre} procesada correctamente")
|
82 |
|
83 |
-
gr.
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
|
61 |
noticias(foldername)
|
62 |
segmentacion = f"diarios/predict/{filename}.png"
|
63 |
+
segmentacion = cv2.imread(segmentacion)
|
64 |
recorte1 = f"recorte/{foldername}/nota 0.jpg"
|
65 |
prediccion = f"deteccion/{foldername}/predict/nota 0.jpg"
|
66 |
|
|
|
73 |
recorte2 = "sin_nota.jpg"
|
74 |
prediccion2 = "sin_nota.jpg"
|
75 |
|
76 |
+
return segmentacion, prediccion, prediccion2, num_notas
|
77 |
|
78 |
def noticias(carpeta):
|
79 |
nombre = carpeta
|
80 |
+
model = YOLO("best-detect.pt")
|
81 |
results = model.predict(source=f"recorte/{nombre}", save=True, save_txt=True,project=f"deteccion/{nombre}", conf=0.75) # save plotted images
|
82 |
return print(f"Imagen {nombre} procesada correctamente")
|
83 |
|
84 |
+
with gr.Blocks() as demo:
|
85 |
+
gr.Markdown(
|
86 |
+
"""
|
87 |
+
<h1 align="center"> IA por la Identidad
|
88 |
+
</h1>
|
89 |
+
<h2 align="center"> Dathaton
|
90 |
+
</h2>
|
91 |
+
"""
|
92 |
+
)
|
93 |
+
gr.Markdown(
|
94 |
+
"""
|
95 |
+
<p align="center">
|
96 |
+
<img width = 600 src="https://raw.githubusercontent.com/BonfantiMatias/images/main/banner%20fundaciones.jpeg">
|
97 |
+
|
98 |
+
</p>
|
99 |
+
|
100 |
+
"""
|
101 |
+
)
|
102 |
+
|
103 |
+
|
104 |
+
gr.Markdown(
|
105 |
+
"""
|
106 |
+
- Puede Seleccionar una de las imagenes de ejemplo o subir una desde su pc
|
107 |
+
- Para borrar la imagen que esta en la ventana de procesamiento debe presionar la "X" que se encuentra en el vertice superior derecho
|
108 |
+
"""
|
109 |
+
)
|
110 |
+
with gr.Row():
|
111 |
+
seed = gr.components.Image(type="filepath", label="Input")
|
112 |
+
with gr.Row():
|
113 |
+
with gr.Column():
|
114 |
+
gr.Examples(["Ambito2.jpg"], inputs=[seed])
|
115 |
+
gr.Examples(["Clarin2.jpg"], inputs=[seed])
|
116 |
+
|
117 |
+
with gr.Column():
|
118 |
+
gr.Examples(["Popular.jpg"], inputs=[seed])
|
119 |
+
gr.Examples(["Clarin3.jpg"], inputs=[seed])
|
120 |
+
|
121 |
+
with gr.Row():
|
122 |
+
notas = gr.Label(label="Numero de Notas")
|
123 |
+
|
124 |
+
with gr.Row():
|
125 |
+
|
126 |
+
with gr.Column():
|
127 |
+
segmentacion = gr.Image(label="Segmentacion Notas")
|
128 |
+
with gr.Column():
|
129 |
+
prediccion = gr.Image(label="Prediccion Primera Nota")
|
130 |
+
with gr.Column():
|
131 |
+
prediccion2 = gr.Image(label="Prediccion Segunda Nota")
|
132 |
+
|
133 |
+
with gr.Row():
|
134 |
+
btn = gr.Button("Procesar Imagen")
|
135 |
+
btn.click(recortar_notas, inputs=[seed], outputs=[segmentacion, prediccion, prediccion2, notas])
|
136 |
+
|
137 |
+
if __name__ == "__main__":
|
138 |
+
demo.launch()
|