Spaces:
Sleeping
Sleeping
import datetime | |
from pathlib import Path | |
import pandas as pd | |
import torch | |
from datasets import load_dataset | |
from tqdm import tqdm | |
from modules import shared | |
from modules.models import clear_torch_cache, load_model, unload_model | |
from modules.models_settings import get_model_metadata, update_model_parameters | |
from modules.text_generation import encode | |
def load_past_evaluations(): | |
if Path('logs/evaluations.csv').exists(): | |
df = pd.read_csv(Path('logs/evaluations.csv'), dtype=str) | |
df['Perplexity'] = pd.to_numeric(df['Perplexity']) | |
return df | |
else: | |
return pd.DataFrame(columns=['Model', 'LoRAs', 'Dataset', 'Perplexity', 'stride', 'max_length', 'Date', 'Comment']) | |
past_evaluations = load_past_evaluations() | |
def save_past_evaluations(df): | |
global past_evaluations | |
past_evaluations = df | |
filepath = Path('logs/evaluations.csv') | |
filepath.parent.mkdir(parents=True, exist_ok=True) | |
df.to_csv(filepath, index=False) | |
def calculate_perplexity(models, input_dataset, stride, _max_length): | |
''' | |
Based on: | |
https://huggingface.co./docs/transformers/perplexity#calculating-ppl-with-fixedlength-models | |
''' | |
global past_evaluations | |
cumulative_log = '' | |
cumulative_log += "Loading the input dataset...\n\n" | |
yield cumulative_log | |
# Copied from https://github.com/qwopqwop200/GPTQ-for-LLaMa/blob/triton/utils/datautils.py | |
if input_dataset == 'wikitext': | |
data = load_dataset('wikitext', 'wikitext-2-raw-v1', split='test') | |
text = "\n\n".join(data['text']) | |
elif input_dataset == 'ptb': | |
data = load_dataset('ptb_text_only', 'penn_treebank', split='validation') | |
text = "\n\n".join(data['sentence']) | |
elif input_dataset == 'ptb_new': | |
data = load_dataset('ptb_text_only', 'penn_treebank', split='test') | |
text = " ".join(data['sentence']) | |
else: | |
with open(Path(f'training/datasets/{input_dataset}.txt'), 'r', encoding='utf-8') as f: | |
text = f.read() | |
for model in models: | |
if is_in_past_evaluations(model, input_dataset, stride, _max_length): | |
cumulative_log += f"`{model}` has already been tested. Ignoring.\n\n" | |
yield cumulative_log | |
continue | |
if model != 'current model': | |
try: | |
yield cumulative_log + f"Loading `{model}`...\n\n" | |
model_settings = get_model_metadata(model) | |
shared.settings.update({k: v for k, v in model_settings.items() if k in shared.settings}) # hijacking the interface defaults | |
update_model_parameters(model_settings) # hijacking the command-line arguments | |
shared.model_name = model | |
unload_model() | |
shared.model, shared.tokenizer = load_model(shared.model_name) | |
except: | |
cumulative_log += f"Failed to load `{model}`. Moving on.\n\n" | |
yield cumulative_log | |
continue | |
cumulative_log += f"Processing `{shared.model_name}`...\n\n" | |
yield cumulative_log + "Tokenizing the input dataset...\n\n" | |
encodings = encode(text, add_special_tokens=False) | |
seq_len = encodings.shape[1] | |
if _max_length: | |
max_length = _max_length | |
elif hasattr(shared.model.config, 'max_position_embeddings'): | |
max_length = shared.model.config.max_position_embeddings | |
else: | |
max_length = 2048 | |
nlls = [] | |
prev_end_loc = 0 | |
for begin_loc in tqdm(range(0, seq_len, stride)): | |
yield cumulative_log + f"Evaluating... {100*begin_loc/seq_len:.2f}%" | |
end_loc = min(begin_loc + max_length, seq_len) | |
trg_len = end_loc - prev_end_loc # may be different from stride on last loop | |
input_ids = encodings[:, begin_loc:end_loc] | |
target_ids = input_ids.clone() | |
target_ids[:, :-trg_len] = -100 | |
clear_torch_cache() | |
with torch.no_grad(): | |
outputs = shared.model(input_ids=input_ids, labels=target_ids) | |
# loss is calculated using CrossEntropyLoss which averages over valid labels | |
# N.B. the model only calculates loss over trg_len - 1 labels, because it internally shifts the labels | |
# to the left by 1. | |
neg_log_likelihood = outputs.loss | |
nlls.append(neg_log_likelihood) | |
prev_end_loc = end_loc | |
if end_loc == seq_len: | |
break | |
ppl = torch.exp(torch.stack(nlls).mean()) | |
add_entry_to_past_evaluations(float(ppl), shared.model_name, input_dataset, stride, _max_length) | |
save_past_evaluations(past_evaluations) | |
cumulative_log += f"The perplexity for `{shared.model_name}` is: {float(ppl)}\n\n" | |
yield cumulative_log | |
def add_entry_to_past_evaluations(perplexity, model, dataset, stride, max_length): | |
global past_evaluations | |
entry = { | |
'Model': model, | |
'LoRAs': ', '.join(shared.lora_names) or '-', | |
'Dataset': dataset, | |
'Perplexity': perplexity, | |
'stride': str(stride), | |
'max_length': str(max_length), | |
'Date': datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S'), | |
'Comment': '' | |
} | |
past_evaluations = pd.concat([past_evaluations, pd.DataFrame([entry])], ignore_index=True) | |
def is_in_past_evaluations(model, dataset, stride, max_length): | |
entries = past_evaluations[(past_evaluations['Model'] == model) & | |
(past_evaluations['Dataset'] == dataset) & | |
(past_evaluations['max_length'] == str(max_length)) & | |
(past_evaluations['stride'] == str(stride))] | |
if entries.shape[0] > 0: | |
return True | |
else: | |
return False | |
def generate_markdown_table(): | |
sorted_df = past_evaluations.sort_values(by=['Dataset', 'stride', 'Perplexity', 'Date']) | |
return sorted_df | |