Spaces:
Running
Running
import os | |
import json | |
def create_graph(lora_path, lora_name): | |
try: | |
import matplotlib.pyplot as plt | |
from matplotlib.ticker import ScalarFormatter | |
peft_model_path = f'{lora_path}/training_graph.json' | |
image_model_path = f'{lora_path}/training_graph.png' | |
# Check if the JSON file exists | |
if os.path.exists(peft_model_path): | |
# Load data from JSON file | |
with open(peft_model_path, 'r') as file: | |
data = json.load(file) | |
# Extract x, y1, and y2 values | |
x = [item['epoch'] for item in data] | |
y1 = [item['learning_rate'] for item in data] | |
y2 = [item['loss'] for item in data] | |
# Create the line chart | |
fig, ax1 = plt.subplots(figsize=(10, 6)) | |
# Plot y1 (learning rate) on the first y-axis | |
ax1.plot(x, y1, 'b-', label='Learning Rate') | |
ax1.set_xlabel('Epoch') | |
ax1.set_ylabel('Learning Rate', color='b') | |
ax1.tick_params('y', colors='b') | |
# Create a second y-axis | |
ax2 = ax1.twinx() | |
# Plot y2 (loss) on the second y-axis | |
ax2.plot(x, y2, 'r-', label='Loss') | |
ax2.set_ylabel('Loss', color='r') | |
ax2.tick_params('y', colors='r') | |
# Set the y-axis formatter to display numbers in scientific notation | |
ax1.yaxis.set_major_formatter(ScalarFormatter(useMathText=True)) | |
ax1.ticklabel_format(style='sci', axis='y', scilimits=(0,0)) | |
# Add grid | |
ax1.grid(True) | |
# Combine the legends for both plots | |
lines, labels = ax1.get_legend_handles_labels() | |
lines2, labels2 = ax2.get_legend_handles_labels() | |
ax2.legend(lines + lines2, labels + labels2, loc='best') | |
# Set the title | |
plt.title(f'{lora_name} LR and Loss vs Epoch') | |
# Save the chart as an image | |
plt.savefig(image_model_path) | |
print(f"Graph saved in {image_model_path}") | |
else: | |
print(f"File 'training_graph.json' does not exist in the {lora_path}") | |
except ImportError: | |
print("matplotlib is not installed. Please install matplotlib to create PNG graphs") |