Spaces:
Running
Running
File size: 18,284 Bytes
cd36062 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 |
import argparse
import os
import sys
from collections import OrderedDict
from pathlib import Path
import yaml
from modules.logging_colors import logger
# Model variables
model = None
tokenizer = None
model_name = 'None'
is_seq2seq = False
model_dirty_from_training = False
lora_names = []
# Generation variables
stop_everything = False
generation_lock = None
processing_message = '*Is typing...*'
# UI variables
gradio = {}
persistent_interface_state = {}
need_restart = False
# UI defaults
settings = {
'dark_theme': True,
'show_controls': True,
'start_with': '',
'mode': 'chat',
'chat_style': 'cai-chat',
'prompt-default': 'QA',
'prompt-notebook': 'QA',
'preset': 'simple-1',
'max_new_tokens': 200,
'max_new_tokens_min': 1,
'max_new_tokens_max': 4096,
'negative_prompt': '',
'seed': -1,
'truncation_length': 2048,
'truncation_length_min': 0,
'truncation_length_max': 200000,
'max_tokens_second': 0,
'custom_stopping_strings': '',
'custom_token_bans': '',
'auto_max_new_tokens': False,
'ban_eos_token': False,
'add_bos_token': True,
'skip_special_tokens': True,
'stream': True,
'character': 'Assistant',
'name1': 'You',
'instruction_template': 'Alpaca',
'custom_system_message': '',
'chat-instruct_command': 'Continue the chat dialogue below. Write a single reply for the character "<|character|>".\n\n<|prompt|>',
'autoload_model': False,
'gallery-items_per_page': 50,
'gallery-open': False,
'default_extensions': ['gallery'],
}
parser = argparse.ArgumentParser(formatter_class=lambda prog: argparse.HelpFormatter(prog, max_help_position=54))
# Basic settings
parser.add_argument('--multi-user', action='store_true', help='Multi-user mode. Chat histories are not saved or automatically loaded. Warning: this is likely not safe for sharing publicly.')
parser.add_argument('--character', type=str, help='The name of the character to load in chat mode by default.')
parser.add_argument('--model', type=str, help='Name of the model to load by default.')
parser.add_argument('--lora', type=str, nargs='+', help='The list of LoRAs to load. If you want to load more than one LoRA, write the names separated by spaces.')
parser.add_argument('--model-dir', type=str, default='models/', help='Path to directory with all the models.')
parser.add_argument('--lora-dir', type=str, default='loras/', help='Path to directory with all the loras.')
parser.add_argument('--model-menu', action='store_true', help='Show a model menu in the terminal when the web UI is first launched.')
parser.add_argument('--settings', type=str, help='Load the default interface settings from this yaml file. See settings-template.yaml for an example. If you create a file called settings.yaml, this file will be loaded by default without the need to use the --settings flag.')
parser.add_argument('--extensions', type=str, nargs='+', help='The list of extensions to load. If you want to load more than one extension, write the names separated by spaces.')
parser.add_argument('--verbose', action='store_true', help='Print the prompts to the terminal.')
parser.add_argument('--chat-buttons', action='store_true', help='Show buttons on the chat tab instead of a hover menu.')
# Model loader
parser.add_argument('--loader', type=str, help='Choose the model loader manually, otherwise, it will get autodetected. Valid options: Transformers, llama.cpp, llamacpp_HF, ExLlama_HF, ExLlamav2_HF, AutoGPTQ, AutoAWQ, GPTQ-for-LLaMa, ExLlama, ExLlamav2, ctransformers.')
# Accelerate/transformers
parser.add_argument('--cpu', action='store_true', help='Use the CPU to generate text. Warning: Training on CPU is extremely slow.')
parser.add_argument('--auto-devices', action='store_true', help='Automatically split the model across the available GPU(s) and CPU.')
parser.add_argument('--gpu-memory', type=str, nargs='+', help='Maximum GPU memory in GiB to be allocated per GPU. Example: --gpu-memory 10 for a single GPU, --gpu-memory 10 5 for two GPUs. You can also set values in MiB like --gpu-memory 3500MiB.')
parser.add_argument('--cpu-memory', type=str, help='Maximum CPU memory in GiB to allocate for offloaded weights. Same as above.')
parser.add_argument('--disk', action='store_true', help='If the model is too large for your GPU(s) and CPU combined, send the remaining layers to the disk.')
parser.add_argument('--disk-cache-dir', type=str, default='cache', help='Directory to save the disk cache to. Defaults to "cache".')
parser.add_argument('--load-in-8bit', action='store_true', help='Load the model with 8-bit precision (using bitsandbytes).')
parser.add_argument('--bf16', action='store_true', help='Load the model with bfloat16 precision. Requires NVIDIA Ampere GPU.')
parser.add_argument('--no-cache', action='store_true', help='Set use_cache to False while generating text. This reduces VRAM usage slightly, but it comes at a performance cost.')
parser.add_argument('--xformers', action='store_true', help='Use xformer\'s memory efficient attention. This is really old and probably doesn\'t do anything.')
parser.add_argument('--sdp-attention', action='store_true', help='Use PyTorch 2.0\'s SDP attention. Same as above.')
parser.add_argument('--trust-remote-code', action='store_true', help='Set trust_remote_code=True while loading the model. Necessary for some models.')
parser.add_argument('--force-safetensors', action='store_true', help='Set use_safetensors=True while loading the model. This prevents arbitrary code execution.')
parser.add_argument('--no_use_fast', action='store_true', help='Set use_fast=False while loading the tokenizer (it\'s True by default). Use this if you have any problems related to use_fast.')
parser.add_argument('--use_flash_attention_2', action='store_true', help='Set use_flash_attention_2=True while loading the model.')
# Accelerate 4-bit
parser.add_argument('--load-in-4bit', action='store_true', help='Load the model with 4-bit precision (using bitsandbytes).')
parser.add_argument('--use_double_quant', action='store_true', help='use_double_quant for 4-bit.')
parser.add_argument('--compute_dtype', type=str, default='float16', help='compute dtype for 4-bit. Valid options: bfloat16, float16, float32.')
parser.add_argument('--quant_type', type=str, default='nf4', help='quant_type for 4-bit. Valid options: nf4, fp4.')
# llama.cpp
parser.add_argument('--n_ctx', type=int, default=2048, help='Size of the prompt context.')
parser.add_argument('--threads', type=int, default=0, help='Number of threads to use.')
parser.add_argument('--threads-batch', type=int, default=0, help='Number of threads to use for batches/prompt processing.')
parser.add_argument('--no_mul_mat_q', action='store_true', help='Disable the mulmat kernels.')
parser.add_argument('--n_batch', type=int, default=512, help='Maximum number of prompt tokens to batch together when calling llama_eval.')
parser.add_argument('--no-mmap', action='store_true', help='Prevent mmap from being used.')
parser.add_argument('--mlock', action='store_true', help='Force the system to keep the model in RAM.')
parser.add_argument('--n-gpu-layers', type=int, default=0, help='Number of layers to offload to the GPU.')
parser.add_argument('--tensor_split', type=str, default=None, help='Split the model across multiple GPUs. Comma-separated list of proportions. Example: 18,17.')
parser.add_argument('--numa', action='store_true', help='Activate NUMA task allocation for llama.cpp.')
parser.add_argument('--logits_all', action='store_true', help='Needs to be set for perplexity evaluation to work. Otherwise, ignore it, as it makes prompt processing slower.')
parser.add_argument('--cache-capacity', type=str, help='Maximum cache capacity (llama-cpp-python). Examples: 2000MiB, 2GiB. When provided without units, bytes will be assumed.')
# ExLlama
parser.add_argument('--gpu-split', type=str, help='Comma-separated list of VRAM (in GB) to use per GPU device for model layers. Example: 20,7,7.')
parser.add_argument('--max_seq_len', type=int, default=2048, help='Maximum sequence length.')
parser.add_argument('--cfg-cache', action='store_true', help='ExLlama_HF: Create an additional cache for CFG negative prompts. Necessary to use CFG with that loader, but not necessary for CFG with base ExLlama.')
parser.add_argument('--no_flash_attn', action='store_true', help='Force flash-attention to not be used.')
parser.add_argument('--cache_8bit', action='store_true', help='Use 8-bit cache to save VRAM.')
# AutoGPTQ
parser.add_argument('--triton', action='store_true', help='Use triton.')
parser.add_argument('--no_inject_fused_attention', action='store_true', help='Disable the use of fused attention, which will use less VRAM at the cost of slower inference.')
parser.add_argument('--no_inject_fused_mlp', action='store_true', help='Triton mode only: disable the use of fused MLP, which will use less VRAM at the cost of slower inference.')
parser.add_argument('--no_use_cuda_fp16', action='store_true', help='This can make models faster on some systems.')
parser.add_argument('--desc_act', action='store_true', help='For models that do not have a quantize_config.json, this parameter is used to define whether to set desc_act or not in BaseQuantizeConfig.')
parser.add_argument('--disable_exllama', action='store_true', help='Disable ExLlama kernel, which can improve inference speed on some systems.')
# GPTQ-for-LLaMa
parser.add_argument('--wbits', type=int, default=0, help='Load a pre-quantized model with specified precision in bits. 2, 3, 4 and 8 are supported.')
parser.add_argument('--model_type', type=str, help='Model type of pre-quantized model. Currently LLaMA, OPT, and GPT-J are supported.')
parser.add_argument('--groupsize', type=int, default=-1, help='Group size.')
parser.add_argument('--pre_layer', type=int, nargs='+', help='The number of layers to allocate to the GPU. Setting this parameter enables CPU offloading for 4-bit models. For multi-gpu, write the numbers separated by spaces, eg --pre_layer 30 60.')
parser.add_argument('--checkpoint', type=str, help='The path to the quantized checkpoint file. If not specified, it will be automatically detected.')
parser.add_argument('--monkey-patch', action='store_true', help='Apply the monkey patch for using LoRAs with quantized models.')
# DeepSpeed
parser.add_argument('--deepspeed', action='store_true', help='Enable the use of DeepSpeed ZeRO-3 for inference via the Transformers integration.')
parser.add_argument('--nvme-offload-dir', type=str, help='DeepSpeed: Directory to use for ZeRO-3 NVME offloading.')
parser.add_argument('--local_rank', type=int, default=0, help='DeepSpeed: Optional argument for distributed setups.')
# RWKV
parser.add_argument('--rwkv-strategy', type=str, default=None, help='RWKV: The strategy to use while loading the model. Examples: "cpu fp32", "cuda fp16", "cuda fp16i8".')
parser.add_argument('--rwkv-cuda-on', action='store_true', help='RWKV: Compile the CUDA kernel for better performance.')
# RoPE
parser.add_argument('--alpha_value', type=float, default=1, help='Positional embeddings alpha factor for NTK RoPE scaling. Use either this or compress_pos_emb, not both.')
parser.add_argument('--rope_freq_base', type=int, default=0, help='If greater than 0, will be used instead of alpha_value. Those two are related by rope_freq_base = 10000 * alpha_value ^ (64 / 63).')
parser.add_argument('--compress_pos_emb', type=int, default=1, help="Positional embeddings compression factor. Should be set to (context length) / (model\'s original context length). Equal to 1/rope_freq_scale.")
# Gradio
parser.add_argument('--listen', action='store_true', help='Make the web UI reachable from your local network.')
parser.add_argument('--listen-port', type=int, help='The listening port that the server will use.')
parser.add_argument('--listen-host', type=str, help='The hostname that the server will use.')
parser.add_argument('--share', action='store_true', help='Create a public URL. This is useful for running the web UI on Google Colab or similar.')
parser.add_argument('--auto-launch', action='store_true', default=False, help='Open the web UI in the default browser upon launch.')
parser.add_argument('--gradio-auth', type=str, help='Set Gradio authentication password in the format "username:password". Multiple credentials can also be supplied with "u1:p1,u2:p2,u3:p3".', default=None)
parser.add_argument('--gradio-auth-path', type=str, help='Set the Gradio authentication file path. The file should contain one or more user:password pairs in the same format as above.', default=None)
parser.add_argument('--ssl-keyfile', type=str, help='The path to the SSL certificate key file.', default=None)
parser.add_argument('--ssl-certfile', type=str, help='The path to the SSL certificate cert file.', default=None)
# API
parser.add_argument('--api', action='store_true', help='Enable the API extension.')
parser.add_argument('--public-api', action='store_true', help='Create a public URL for the API using Cloudfare.')
parser.add_argument('--public-api-id', type=str, help='Tunnel ID for named Cloudflare Tunnel. Use together with public-api option.', default=None)
parser.add_argument('--api-port', type=int, default=5000, help='The listening port for the API.')
parser.add_argument('--api-key', type=str, default='', help='API authentication key.')
parser.add_argument('--admin-key', type=str, default='', help='API authentication key for admin tasks like loading and unloading models. If not set, will be the same as --api-key.')
parser.add_argument('--nowebui', action='store_true', help='Do not launch the Gradio UI. Useful for launching the API in standalone mode.')
# Multimodal
parser.add_argument('--multimodal-pipeline', type=str, default=None, help='The multimodal pipeline to use. Examples: llava-7b, llava-13b.')
# Deprecated parameters
parser.add_argument('--notebook', action='store_true', help='DEPRECATED')
parser.add_argument('--chat', action='store_true', help='DEPRECATED')
parser.add_argument('--no-stream', action='store_true', help='DEPRECATED')
parser.add_argument('--mul_mat_q', action='store_true', help='DEPRECATED')
parser.add_argument('--api-blocking-port', type=int, default=5000, help='DEPRECATED')
parser.add_argument('--api-streaming-port', type=int, default=5005, help='DEPRECATED')
parser.add_argument('--llama_cpp_seed', type=int, default=0, help='DEPRECATED')
parser.add_argument('--use_fast', action='store_true', help='DEPRECATED')
args = parser.parse_args()
args_defaults = parser.parse_args([])
provided_arguments = []
for arg in sys.argv[1:]:
arg = arg.lstrip('-').replace('-', '_')
if hasattr(args, arg):
provided_arguments.append(arg)
# Deprecation warnings
deprecated_args = ['notebook', 'chat', 'no_stream', 'mul_mat_q', 'use_fast']
for k in deprecated_args:
if getattr(args, k):
logger.warning(f'The --{k} flag has been deprecated and will be removed soon. Please remove that flag.')
# Security warnings
if args.trust_remote_code:
logger.warning('trust_remote_code is enabled. This is dangerous.')
if 'COLAB_GPU' not in os.environ and not args.nowebui:
if args.share:
logger.warning("The gradio \"share link\" feature uses a proprietary executable to create a reverse tunnel. Use it with care.")
if any((args.listen, args.share)) and not any((args.gradio_auth, args.gradio_auth_path)):
logger.warning("\nYou are potentially exposing the web UI to the entire internet without any access password.\nYou can create one with the \"--gradio-auth\" flag like this:\n\n--gradio-auth username:password\n\nMake sure to replace username:password with your own.")
if args.multi_user:
logger.warning('\nThe multi-user mode is highly experimental and should not be shared publicly.')
def fix_loader_name(name):
if not name:
return name
name = name.lower()
if name in ['llamacpp', 'llama.cpp', 'llama-cpp', 'llama cpp']:
return 'llama.cpp'
if name in ['llamacpp_hf', 'llama.cpp_hf', 'llama-cpp-hf', 'llamacpp-hf', 'llama.cpp-hf']:
return 'llamacpp_HF'
elif name in ['transformers', 'huggingface', 'hf', 'hugging_face', 'hugging face']:
return 'Transformers'
elif name in ['autogptq', 'auto-gptq', 'auto_gptq', 'auto gptq']:
return 'AutoGPTQ'
elif name in ['gptq-for-llama', 'gptqforllama', 'gptqllama', 'gptq for llama', 'gptq_for_llama']:
return 'GPTQ-for-LLaMa'
elif name in ['exllama', 'ex-llama', 'ex_llama', 'exlama']:
return 'ExLlama'
elif name in ['exllama-hf', 'exllama_hf', 'exllama hf', 'ex-llama-hf', 'ex_llama_hf']:
return 'ExLlama_HF'
elif name in ['exllamav2', 'exllama-v2', 'ex_llama-v2', 'exlamav2', 'exlama-v2', 'exllama2', 'exllama-2']:
return 'ExLlamav2'
elif name in ['exllamav2-hf', 'exllamav2_hf', 'exllama-v2-hf', 'exllama_v2_hf', 'exllama-v2_hf', 'exllama2-hf', 'exllama2_hf', 'exllama-2-hf', 'exllama_2_hf', 'exllama-2_hf']:
return 'ExLlamav2_HF'
elif name in ['ctransformers', 'ctranforemrs', 'ctransformer']:
return 'ctransformers'
elif name in ['autoawq', 'awq', 'auto-awq']:
return 'AutoAWQ'
def add_extension(name, last=False):
if args.extensions is None:
args.extensions = [name]
elif last:
args.extensions = [x for x in args.extensions if x != name]
args.extensions.append(name)
elif name not in args.extensions:
args.extensions.append(name)
def is_chat():
return True
args.loader = fix_loader_name(args.loader)
# Activate the multimodal extension
if args.multimodal_pipeline is not None:
add_extension('multimodal')
# Activate the API extension
if args.api or args.public_api:
add_extension('openai', last=True)
# Load model-specific settings
with Path(f'{args.model_dir}/config.yaml') as p:
if p.exists():
model_config = yaml.safe_load(open(p, 'r').read())
else:
model_config = {}
# Load custom model-specific settings
with Path(f'{args.model_dir}/config-user.yaml') as p:
if p.exists():
user_config = yaml.safe_load(open(p, 'r').read())
else:
user_config = {}
model_config = OrderedDict(model_config)
user_config = OrderedDict(user_config)
|