markpeace commited on
Commit
4b31779
·
1 Parent(s): ce155aa
Files changed (4) hide show
  1. __pycache__/app.cpython-39.pyc +0 -0
  2. app.py +47 -32
  3. test2.py +94 -0
  4. test3.py +81 -0
__pycache__/app.cpython-39.pyc CHANGED
Binary files a/__pycache__/app.cpython-39.pyc and b/__pycache__/app.cpython-39.pyc differ
 
app.py CHANGED
@@ -1,54 +1,69 @@
1
- #import json
2
-
3
  from flask import Flask,request
4
  from dotenv import load_dotenv
5
 
6
- from langchain.agents import tool
7
-
8
-
9
  # Initializing flask app
10
  app = Flask(__name__)
11
  load_dotenv()
12
 
 
 
 
13
 
14
- @tool
15
- def FAQ(question: str):
16
- """Answers the question 1+1"""
17
- return 23
18
-
19
- tools=[FAQ]
20
 
21
 
22
- @app.route('/', methods=['GET','POST'])
23
- def index():
 
 
 
24
 
25
- input = {
26
- "page_context":"home",
27
- "user_summary":"The user is a first year student on BA Architecture",
28
- "session_summary":"The user has introduced themselves as Mark Peace and asked how the bot is doing",
29
- "user_input":"Can you remind me of my own name?"
30
- }
31
 
 
 
32
 
33
- from langchain_openai import ChatOpenAI
34
- from langchain.agents import create_openai_functions_agent
35
- from langchain.prompts import ChatPromptTemplate, MessagesPlaceholder
36
- from langchain.agents import AgentExecutor
 
37
 
 
38
 
39
  llm = ChatOpenAI(model="gpt-3.5-turbo", temperature=0)
40
 
41
- prompt = ChatPromptTemplate.from_messages([
42
- ("system", "You are a helpful AI bot. Your name is Bob. Please do not answer if you aren't sure of the answer"),
43
- ("system", "Here is a summary of the conversation so far: {session_summary}"),
44
- ("human", "{user_input}"),
45
- MessagesPlaceholder(variable_name="agent_scratchpad")
46
- ])
 
 
 
 
 
 
 
 
47
 
48
  agent = create_openai_functions_agent(llm, tools, prompt)
49
 
50
- agent_executor = AgentExecutor(agent=agent, tools=tools, verbose=True)
51
 
52
- response=agent_executor.invoke(input)
 
53
 
54
- return response
 
1
+ #ESTABLISH THE SERVER
 
2
  from flask import Flask,request
3
  from dotenv import load_dotenv
4
 
 
 
 
5
  # Initializing flask app
6
  app = Flask(__name__)
7
  load_dotenv()
8
 
9
+ @app.route("/", methods=['GET','POST'])
10
+ def index():
11
+ from typing import List
12
 
13
+ from langchain.prompts import PromptTemplate
14
+ from langchain_core.output_parsers import JsonOutputParser
15
+ from langchain_core.pydantic_v1 import BaseModel, Field
16
+ from langchain_openai import ChatOpenAI
17
+ from langchain_community.tools.convert_to_openai import format_tool_to_openai_function
18
+ from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
19
 
20
 
21
+ # Define your desired data structure.
22
+ class FrontEndActions(BaseModel):
23
+ """Structure to pass actions back to the frontend"""
24
+ text: str = Field(description="The text to display on the button")
25
+ type: str = Field(description="This should be a string that identifies the type of action. It can be one of: SuggestGoal, SuggestRiseActivity")
26
 
27
+ class ResponseSchema(BaseModel):
28
+ """Final response to the question being asked"""
29
+ message: str = Field(description="final answer to respond to the user")
30
+ #characters: str = Field(description="number of characters in the answer")
31
+ #actions: List[FrontEndActions] = Field(description="List of suggested actions that should be passed back to the frontend to display. The use will click these to enact them. ")
32
+ #tokens: int = Field(description="Count the number of used to produce the response")
33
 
34
+ # Set up a parser + inject instructions into the prompt template.
35
+ parser = JsonOutputParser(pydantic_object=ResponseSchema)
36
 
37
+ prompt = PromptTemplate(
38
+ template="""Answer the user query.\n{format_instructions}\n{input}\n{agent_scratchpad}""",
39
+ input_variables=["input"],
40
+ partial_variables={"format_instructions": parser.get_format_instructions()}
41
+ )
42
 
43
+ print(parser)
44
 
45
  llm = ChatOpenAI(model="gpt-3.5-turbo", temperature=0)
46
 
47
+ from langchain.agents import tool
48
+
49
+ @tool
50
+ def get_word_length():
51
+ """Returns the length of a word."""
52
+ return 1
53
+
54
+
55
+ tools = [get_word_length]
56
+
57
+ from langchain_openai import ChatOpenAI
58
+
59
+ llm = ChatOpenAI(model="gpt-3.5-turbo", temperature=0)
60
+ from langchain.agents import create_openai_functions_agent
61
 
62
  agent = create_openai_functions_agent(llm, tools, prompt)
63
 
64
+ from langchain.agents import AgentExecutor
65
 
66
+ agent_executor = AgentExecutor(agent=agent, tools=tools, verbose=True)
67
+ response = agent_executor.invoke({"input": "What are you?"})
68
 
69
+ return response['output']
test2.py ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #import json
2
+
3
+ from flask import Flask,request
4
+ from dotenv import load_dotenv
5
+
6
+ from langchain.agents import tool
7
+
8
+
9
+ # Initializing flask app
10
+ app = Flask(__name__)
11
+ load_dotenv()
12
+
13
+
14
+ @tool
15
+ def FAQ(question: str):
16
+ """Answers the question 1+1"""
17
+ return 23
18
+
19
+ tools=[FAQ]
20
+
21
+
22
+ @app.route('/', methods=['GET','POST'])
23
+ def index():
24
+
25
+ from langchain_openai import ChatOpenAI
26
+ from langchain.prompts import ChatPromptTemplate, MessagesPlaceholder
27
+ from langchain.agents import AgentExecutor
28
+ from typing import List
29
+ from pydantic import BaseModel, Field
30
+ import json
31
+
32
+ from langchain.utils.openai_functions import convert_pydantic_to_openai_function
33
+ from langchain.agents.format_scratchpad import format_to_openai_function_messages
34
+
35
+ from langchain_core.agents import AgentActionMessageLog, AgentFinish
36
+
37
+
38
+ class Response(BaseModel):
39
+ """Final response to the question being asked. This is consumed by a frontend chatbot engine that has the ability to execute suggested actions"""
40
+
41
+ message: str = Field(description="The final answer to be displayed to the user")
42
+ tokens: int = Field(description="Count the number of tokens used to produce the response")
43
+ actions: List[int] = Field(
44
+ description="List of actions to be executed. Only include an action if it contains relevant information"
45
+ )
46
+
47
+
48
+ def parse(output): ##I DON'T UNDERSTAND THIS :)
49
+ if "function_call" not in output.additional_kwargs: return AgentFinish(return_values={"output": output.content}, log=output.content)
50
+ function_call = output.additional_kwargs["function_call"]
51
+ name = function_call["name"]
52
+ inputs = json.loads(function_call["arguments"])
53
+ if name == "Response":
54
+ return AgentFinish(return_values=inputs, log=str(function_call))
55
+ else:
56
+ return AgentActionMessageLog(
57
+ tool=name, tool_input=inputs, log="", message_log=[output]
58
+ )
59
+
60
+ prompt = ChatPromptTemplate.from_messages(
61
+ [
62
+ ("system", "You are a helpful assistant"),
63
+
64
+ ("user", "{input}"),
65
+ MessagesPlaceholder(variable_name="agent_scratchpad"),
66
+ ]
67
+ )
68
+
69
+ llm = ChatOpenAI(temperature=2)
70
+
71
+ llm_with_tools = llm.bind(
72
+ functions=[
73
+ convert_pydantic_to_openai_function(Response), #RESPONSE SCHEMA
74
+ ]
75
+ )
76
+
77
+ agent = (
78
+ {
79
+ "input": lambda x: x["input"],
80
+ "agent_scratchpad": lambda x: format_to_openai_function_messages(
81
+ x["intermediate_steps"]
82
+ ),
83
+ }
84
+ | prompt
85
+ | llm_with_tools
86
+ | parse
87
+ )
88
+
89
+ agent_executor = AgentExecutor(tools=[], agent=agent, verbose=True, handle_parsing_errors="Check your output and make sure it conforms, use the Action/Action Input syntax")
90
+
91
+ return agent_executor.invoke(
92
+ {"input": "what did the president say about kentaji brown jackson"},
93
+ return_only_outputs=True,
94
+ )
test3.py ADDED
@@ -0,0 +1,81 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #ESTABLISH THE SERVER
2
+ from flask import Flask,request
3
+ from dotenv import load_dotenv
4
+
5
+ # Initializing flask app
6
+ app = Flask(__name__)
7
+ load_dotenv()
8
+
9
+ @app.route("/", methods=['GET','POST'])
10
+ def index():
11
+
12
+ import os
13
+ from langchain.prompts import ChatPromptTemplate, HumanMessagePromptTemplate
14
+ from langchain.chat_models import ChatOpenAI
15
+
16
+ from langchain.output_parsers import PydanticOutputParser
17
+ from pydantic import BaseModel, Field
18
+ from typing import List
19
+
20
+ # Define a new Pydantic model with field descriptions and tailored for Twitter.
21
+
22
+ class FrontEndActions(BaseModel):
23
+ """Structure to pass actions back to the frontend"""
24
+ text: str = Field(description="The text to display on the button")
25
+ type: str = Field(description="This should be a string that identifies the type of action. It can be one of: SuggestGoal, SuggestRiseActivity")
26
+
27
+ class ResponseFormat(BaseModel):
28
+ """Final response to the question being asked"""
29
+ message: str = Field(description="The final answer to respond to the user")
30
+ chat_summary: str = Field(description="Summarise what the user has asked and how you have responded in this chat in a way that so that you can remember the conversation")
31
+ actions: List[FrontEndActions] = Field(description="List of suggested actions that should be passed back to the frontend to display. The use will click these to enact them. ")
32
+ tokens: int = Field(description="Count the number of used to produce the response")
33
+
34
+ # Instantiate the parser with the new model.
35
+ parser = PydanticOutputParser(pydantic_object=ResponseFormat)
36
+
37
+ # Update the prompt to match the new query and desired format.
38
+ prompt = ChatPromptTemplate(
39
+ messages=[
40
+ HumanMessagePromptTemplate.from_template(
41
+ """
42
+
43
+ You are a coach supporting students at post-92 university in the UK. It's students are diverse, and many come from non-traditional backgrounds and minority ethnic groups. Some may have ambitions for particular careers, others may not - and many may not be confident or have the social and financial advantages to reach their goals.
44
+
45
+ Your purpose is to help students to set aims (long term ambitions), break them into goals (things they want to achieve during their time at university) and objectives (smart targets).
46
+
47
+ If a student has a sense of what they want to achieve, you should help them to create smart targets. If they don't, you should be reassuring that its ok not to have clear goals yet, but help them to reflect and form some ambitions. These could be career-oriented, or they could be about succeeding in, and making the most of, their university experience.
48
+
49
+ You should be assertive in opening up and guiding the conversation.
50
+
51
+ \n{format_instructions}\n{question}
52
+
53
+ """
54
+ )
55
+ ],
56
+ input_variables=["question"],
57
+ partial_variables={
58
+ "format_instructions": parser.get_format_instructions(),
59
+ },
60
+ )
61
+
62
+ chat_model = ChatOpenAI(
63
+ model="gpt-3.5-turbo",
64
+ openai_api_key=os.getenv("OPENAI_API_KEY"),
65
+ max_tokens=1000
66
+ )
67
+
68
+ # Generate the input using the updated prompt.
69
+ user_query = (
70
+ """
71
+
72
+ I would like to be a teacher, can you give me some goals to achieve this?
73
+
74
+ """
75
+ )
76
+ _input = prompt.format_prompt(question=user_query)
77
+
78
+ output = chat_model(_input.to_messages())
79
+ parsed = parser.parse(output.content)
80
+
81
+ return parsed.dict()