{ "cells": [ { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [], "source": [ "# default_exp core" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# module name here\n", "\n", "> API details." ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "#hide\n", "from nbdev.showdoc import *" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
epochtrain_lossvalid_lossaccuracytime
00.9668880.3119510.89918800:28
" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
epochtrain_lossvalid_lossaccuracytime
00.4581970.2726630.90866000:31
" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "from fastai.vision.all import *\n", "path = untar_data(URLs.PETS)\n", "dls = ImageDataLoaders.from_name_re(path, get_image_files(path/'images'), pat='(.+)_\\d+.jpg', item_tfms=Resize(460), batch_tfms=aug_transforms(size=224, min_scale=0.75))\n", "learn = vision_learner(dls, models.resnet50, metrics=accuracy)\n", "learn.fine_tune(1)\n", "learn.path = Path('.')\n", "learn.export()" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "#export\n", "learn = load_learner('export.pkl')" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [], "source": [ "#export\n", "labels = learn.dls.vocab\n", "def predict(img):\n", " img = PILImage.create(img)\n", " pred,pred_idx,probs = learn.predict(img)\n", "\n", " return {labels[i]: float(probs[i]) for i in range(len(labels))}" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Running on local URL: http://127.0.0.1:7860/\n", "Running on public URL: https://31643.gradio.app\n", "\n", "This share link expires in 72 hours. For free permanent hosting, check out Spaces (https://huggingface.co./spaces)\n" ] }, { "data": { "text/html": [ "\n", " \n", " " ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/plain": [ "(,\n", " 'http://127.0.0.1:7860/',\n", " 'https://31643.gradio.app')" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" }, { "data": { "text/html": [], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "#export\n", "import gradio as gr\n", "gr.Interface(fn=predict, inputs=gr.inputs.Image(shape=(512, 512)), outputs=gr.outputs.Label(num_top_classes=3)).launch(share=True)" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Converted 00_app.ipynb.\r\n", "Converted index.ipynb.\r\n" ] } ], "source": [ "! nbdev_build_lib" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.7" } }, "nbformat": 4, "nbformat_minor": 2 }