Glow-HiFi-TTS / commons.py
marigold334's picture
Upload 10 files
41989ff
raw
history blame
6.89 kB
import torch
import torch.nn.functional as F
from module import *
import numpy as np
import math
def sequence_mask(length, max_length=None):
if max_length is None:
max_length = max(length)
x = torch.arange(max_length, dtype=length.dtype, device=length.device)
return x.unsqueeze(0) < length.unsqueeze(1)
def maximum_path(value, mask, max_neg_val=-np.inf):
""" Numpy-friendly version. It's about 4 times faster than torch version.
value: [b, t_x, t_y]
mask: [b, t_x, t_y]
"""
value = value * mask
device = value.device
dtype = value.dtype
value = value.cpu().detach().numpy()
mask = mask.cpu().detach().numpy().astype(np.bool)
b, t_x, t_y = value.shape
direction = np.zeros(value.shape, dtype=np.int64)
v = np.zeros((b, t_x), dtype=np.float32)
x_range = np.arange(t_x, dtype=np.float32).reshape(1, -1)
for j in range(t_y):
v0 = np.pad(v, [[0, 0], [1, 0]], mode="constant", constant_values=max_neg_val)[:, :-1]
v1 = v
max_mask = (v1 >= v0)
v_max = np.where(max_mask, v1, v0)
direction[:, :, j] = max_mask
index_mask = (x_range <= j)
v = np.where(index_mask, v_max + value[:, :, j], max_neg_val)
direction = np.where(mask, direction, 1)
path = np.zeros(value.shape, dtype=np.float32)
index = mask[:, :, 0].sum(1).astype(np.int64) - 1
index_range = np.arange(b)
for j in reversed(range(t_y)):
path[index_range, index, j] = 1
index = index + direction[index_range, index, j] - 1
path = path * mask.astype(np.float32)
path = torch.from_numpy(path).to(device=device, dtype=dtype)
return path
def generate_path(duration, mask):
"""
duration: [b, t_x]
mask: [b, t_x, t_y]
"""
device = duration.device
b, t_x, t_y = mask.shape
cum_duration = torch.cumsum(duration, 1)
path = torch.zeros(b, t_x, t_y, dtype=mask.dtype).to(device=device)
cum_duration_flat = cum_duration.view(b * t_x)
path = sequence_mask(cum_duration_flat, t_y).to(mask.dtype)
path = path.view(b, t_x, t_y)
path = path - F.pad(path, (0, 0, 1, 0, 0, 0))[:, :-1]
path = path * mask
return path
def mle_loss(z, m, logs, logdet, mask):
# neg normal likelihood w/o the constant term
l = torch.sum(logs) + 0.5 * torch.sum(torch.exp(-2 * logs) * ((z - m)**2))
l = l - torch.sum(logdet) # log jacobian determinant
# averaging across batch, channel and time axes
l = l / torch.sum(torch.ones_like(z) * mask)
l = l + 0.5 * math.log(2 * math.pi) # add the remaining constant term
return l
def duration_loss(logw, logw_, lengths):
l = torch.sum((logw - logw_)**2) / torch.sum(lengths)
return l
class AttrDict(dict):
def __init__(self, *args, **kwargs):
super(AttrDict, self).__init__(*args, **kwargs)
self.__dict__ = self
def GAN_Loss_Generator(gen_outputs):
"""
gen_outputs: (B, ?) list # MPD(len=5) 또는 MSD(len=3)의 출력
"""
loss = 0
for DG in gen_outputs:
loss += torch.mean((DG-1)**2)
return loss
def GAN_Loss_Discriminator(real_outputs, gen_outputs):
"""
real_outputs: (B, ?) list # MPD(len=5) 또는 MSD(len=3)의 출력
gen_outputs: (B, ?) list # MPD(len=5) 또는 MSD(len=3)의 출력
"""
loss = 0
for D, DG in zip(real_outputs, gen_outputs):
loss += torch.mean((D-1)**2 + DG**2)
return loss
def Mel_Spectrogram_Loss(real_mel, gen_mel):
"""
real_mel: (B, F, 80) # Dataloader로부터 가져온 mel-spectrogram
gen_mel: (B, F, 80) # Generator가 생성한 waveform의 mel-spectrogram
"""
loss = F.l1_loss(real_mel, gen_mel)
return 45*loss
def Feature_Matching_Loss(real_features, gen_features):
"""
real_features: (?, ..., ?) list of list # MPD(len=[5, 6]) 또는 MSD(len=[3, 7])의 출력
gen_features: (?, ..., ?) list of list # MPD(len=[5, 6]) 또는 MSD(len=[3, 7])의 출력
"""
loss = 0
for Ds, DGs in zip(real_features, gen_features):
for D, DG in zip(Ds, DGs):
loss += torch.mean(torch.abs(D - DG))
return 2*loss
def Final_Loss_Generator(mpd_gen_outputs, mpd_real_features, mpd_gen_features,
msd_gen_outputs, msd_real_features, msd_gen_features,
real_mel, gen_mel):
"""
=====inputs=====
[:3]: MPD outputs 뒤쪽 3개
[3:6]: MSD outputs 뒤쪽 3개
[7:8]: real_mel and gen_mel
=====outputs=====
Generator_Loss
Mel_Loss
"""
Gen_Adv1 = GAN_Loss_Generator(mpd_gen_outputs)
Gen_Adv2 = GAN_Loss_Generator(msd_gen_outputs)
Adv = Gen_Adv1 + Gen_Adv2
FM1 = Feature_Matching_Loss(mpd_real_features, mpd_gen_features)
FM2 = Feature_Matching_Loss(msd_real_features, msd_gen_features)
FM = FM1 + FM2
Mel_Loss = Mel_Spectrogram_Loss(real_mel, gen_mel)
Generator_Loss = Adv + FM + Mel_Loss
return Generator_Loss, Mel_Loss , Adv, FM
def Final_Loss_Discriminator(mpd_real_outputs, mpd_gen_outputs,
msd_real_outputs, msd_gen_outputs):
"""
=====inputs=====
[:2]: MPD outputs 앞쪽 2개
[2:4]: MSD outputs 앞쪽 2개
=====outputs=====
Discriminator_Loss
"""
Disc_Adv1 = GAN_Loss_Discriminator(mpd_real_outputs, mpd_gen_outputs)
Disc_Adv2 = GAN_Loss_Discriminator(msd_real_outputs, msd_gen_outputs)
Discriminator_Loss = Disc_Adv1 + Disc_Adv2
return Discriminator_Loss
class Adam():
def __init__(self, params, scheduler, dim_model, warmup_steps=4000, lr=1e0, betas=(0.9, 0.98), eps=1e-9):
self.params = params
self.scheduler = scheduler
self.dim_model = dim_model
self.warmup_steps = warmup_steps
self.lr = lr
self.betas = betas
self.eps = eps
self.step_num = 1
self.cur_lr = lr * self._get_lr_scale()
self._optim = torch.optim.Adam(params, lr=self.cur_lr, betas=betas, eps=eps)
self.param_groups = self._optim.param_groups
def _get_lr_scale(self):
if self.scheduler == "noam":
return np.power(self.dim_model, -0.5) * np.min([np.power(self.step_num, -0.5), self.step_num * np.power(self.warmup_steps, -1.5)])
else:
return 1
def _update_learning_rate(self):
self.step_num += 1
if self.scheduler == "noam":
self.cur_lr = self.lr * self._get_lr_scale()
for param_group in self._optim.param_groups:
param_group['lr'] = self.cur_lr
def get_lr(self):
return self.cur_lr
def step(self):
self._optim.step()
self._update_learning_rate()
def zero_grad(self):
self._optim.zero_grad()
def load_state_dict(self, d):
self._optim.load_state_dict(d)
def state_dict(self):
return self._optim.state_dict()