Spaces:
Runtime error
Runtime error
File size: 4,397 Bytes
41989ff 8fde97d 41989ff dcef047 41989ff 8fde97d dcef047 371ba49 dcef047 8fde97d 13dbff0 8fde97d 13dbff0 8fde97d 41989ff 8fde97d 41989ff 8fde97d 41989ff 8fde97d 41989ff 8fde97d 41989ff 8fde97d 41989ff 8fde97d 41989ff 8fde97d dcef047 41989ff |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 |
import streamlit as st
import soundfile as sf
import os, re
import torch
from datautils import *
from model import Generator as Glow_model
from Hmodel import Generator as GAN_model
st.set_page_config(
page_title = "μμ Team Demo",
page_icon = "π",
)
class TTS:
def __init__(self, model_variant):
global device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
torch.cuda.manual_seed(1234) if torch.cuda.is_available() else None
self.flowgenerator = Glow_model(n_vocab = 70, h_c= 192, f_c = 768, f_c_dp = 256, out_c = 80, k_s = 3, k_s_dec = 5, heads=2, layers_enc = 6).to(device)
self.voicegenerator = GAN_model().to(device)
if model_variant == 'μμ':
name = '1038_eunsik_01'
last_chpt1 = './log/1038_eunsik_01/Glow_TTS_00289602.pt'
check_point = torch.load(last_chpt1)
self.flowgenerator.load_state_dict(check_point['generator'], map_location = device)
self.flowgenerator.decoder.skip()
self.flowgenerator.eval()
if model_variant == 'μμ':
name = '1038_eunsik_01'
last_chpt2 = './log/1038_eunsik_01/HiFI_GAN_00257000.pt'
check_point = torch.load(last_chpt2)
self.voicegenerator.load_state_dict(check_point['gen_model'], map_location = device)
self.voicegenerator.eval()
self.voicegenerator.remove_weight_norm()
def inference(self, input_text):
filters = '([.,!?])'
sentence = re.sub(re.compile(filters), '', input_text)
x = text_to_sequence(sentence)
x = torch.autograd.Variable(torch.tensor(x).unsqueeze(0)).to(device).long()
x_length = torch.tensor(x.shape[1]).unsqueeze(0).to(device)
with torch.no_grad():
noise_scale = .667
length_scale = 1.0
(y_gen_tst, *_), *_, (attn_gen, *_) = self.flowgenerator(x, x_length, gen = True, noise_scale = noise_scale, length_scale = length_scale)
y = self.voicegenerator(y_gen_tst)
audio = y.squeeze() * 32768.0
voice = audio.cpu().numpy().astype('int16')
return voice
def init_session_state():
# Model
if "init_model" not in st.session_state:
st.session_state.init_model = True
st.session_state.model_variant = "μμ"
st.session_state.TTS = TTS("μμ")
def update_model():
if st.session_state.model_variant == "KSS":
st.session_state.TTS = TTS("KSS")
elif st.session_state.model_variant == "μμ":
st.session_state.TTS = TTS("μμ")
def update_session_state(state_id, state_value):
st.session_state[f"{state_id}"] = state_value
def centered_text(input_text, mode = "h1",):
st.markdown(
f"<{mode} style='text-align: center;'>{input_text}</{mode}>", unsafe_allow_html = True)
def generate_voice(input_text):
# TTS Inference
voice = st.session_state.TTS.inference(input_text)
# Save audio (bug in Streamlit, can't play numpy array directly)
sf.write(f"cache_sound/{input_text}.wav", voice, 22050)
# Play audio
st.audio(f"cache_sound/{input_text}.wav", format = "audio/wav")
os.remove(f"cache_sound/{input_text}.wav")
st.caption("Generated Voice")
init_session_state()
centered_text("π μμ Team Demo")
centered_text("mel generator : Glow-TTS, vocoder : HiFi-GAN", "h5")
st.write(" ")
mode = "p"
st.markdown(
f"<{mode} style='text-align: left;'><small>This is a demo trained by our vocie. The voice \"KSS\" is traind 3 times \"μμ\" is finetuned from \"KSS\" for 3 times We got this deomoformat from Nix-TTS Interactive Demo</small></{mode}>",
unsafe_allow_html = True
)
st.write(" ")
st.write(" ")
col1, col2 = st.columns(2)
with col1:
input_text = st.text_input(
"νκΈλ‘λ§ μ
λ ₯ν΄μ£ΌμΈμ",
value = "λ₯λ¬λμ μ λ§ μ¬λ°μ΄!",
)
with col2:
model_variant = st.selectbox("λͺ©μ리 μ νν΄μ£ΌμΈμ", options = ["KSS", "μμ"], index = 1)
if model_variant != st.session_state.model_variant:
# Update variant choice
update_session_state("model_variant", model_variant)
# Re-load model
update_model()
button_gen = st.button("Generate Voice")
if button_gen == True:
generate_voice(input_text)
|