Spaces:
Runtime error
Runtime error
File size: 7,084 Bytes
41989ff |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 |
import torch
import torch.nn as nn
import torch.nn.functional as F
from module import *
from commons import *
import math
class Generator(nn.Module):
def __init__(self, n_vocab, h_c, f_c, f_c_dp, out_c, k_s = 3, k_s_dec = 5, heads=2, layers_enc = 6):
super().__init__()
self.encoder = Encoder(n_vocab, out_c, h_c, f_c, f_c_dp, heads= heads, layers = layers_enc, k_s = k_s)
self.decoder = Decoder(in_c = out_c, hi_c = h_c, k_s = k_s_dec)
def forward(self, x, x_lengths, y=None, y_lengths=None, gen = False, noise_scale=1., length_scale=1.):
x_m, x_logs, logw, x_mask = self.encoder(x, x_lengths)
if gen:
w = torch.exp(logw) * x_mask * length_scale
w_ceil = torch.ceil(w)
y_lengths = torch.clamp_min(torch.sum(w_ceil, [1, 2]), 1).long()
y_max_length = None
y, y_lengths, y_max_length = self.preprocess(y, y_lengths, y_max_length)
z_mask = torch.unsqueeze(sequence_mask(y_lengths, y_max_length), 1).to(x_mask.dtype)
attn_mask = torch.unsqueeze(x_mask, -1) * torch.unsqueeze(z_mask, 2)
attn = generate_path(w_ceil.squeeze(1), attn_mask.squeeze(1)).unsqueeze(1)
z_m = torch.matmul(attn.squeeze(1).transpose(1, 2), x_m.transpose(1, 2)).transpose(1, 2) # [b, t', t], [b, t, d] -> [b, d, t']
z_logs = torch.matmul(attn.squeeze(1).transpose(1, 2), x_logs.transpose(1, 2)).transpose(1, 2) # [b, t', t], [b, t, d] -> [b, d, t']
logw_ = torch.log(1e-8 + torch.sum(attn, -1)) * x_mask
z = (z_m + torch.exp(z_logs) * torch.randn_like(z_m) * noise_scale) * z_mask
y, logdet = self.decoder(z, z_mask, reverse=True)
return (y, z_m, z_logs, logdet, z_mask), (x_m, x_logs, x_mask), (attn, logw, logw_)
else:
y_max_length = y.size(2)
y, y_lengths, y_max_length = self.preprocess(y, y_lengths, y_max_length)
z_mask = torch.unsqueeze(sequence_mask(y_lengths, y_max_length), 1).to(x_mask.dtype)
attn_mask = torch.unsqueeze(x_mask, -1) * torch.unsqueeze(z_mask, 2)
z, logdet = self.decoder(y, z_mask, reverse=False)
with torch.no_grad():
x_s_sq_r = torch.exp(-2 * x_logs)
logp1 = torch.sum(-0.5 * math.log(2 * math.pi) - x_logs, [1]).unsqueeze(-1) # [b, t, 1]
logp2 = torch.matmul(x_s_sq_r.transpose(1,2), -0.5 * (z ** 2)) # [b, t, d] x [b, d, t'] = [b, t, t']
logp3 = torch.matmul((x_m * x_s_sq_r).transpose(1,2), z) # [b, t, d] x [b, d, t'] = [b, t, t']
logp4 = torch.sum(-0.5 * (x_m ** 2) * x_s_sq_r, [1]).unsqueeze(-1) # [b, t, 1]
logp = logp1 + logp2 + logp3 + logp4 # [b, t, t']
attn = maximum_path(logp, attn_mask.squeeze(1)).unsqueeze(1).detach()
z_m = torch.matmul(attn.squeeze(1).transpose(1, 2), x_m.transpose(1, 2)).transpose(1, 2) # [b, t', t], [b, t, d] -> [b, d, t']
z_logs = torch.matmul(attn.squeeze(1).transpose(1, 2), x_logs.transpose(1, 2)).transpose(1, 2) # [b, t', t], [b, t, d] -> [b, d, t']
logw_ = torch.log(1e-8 + torch.sum(attn, -1)) * x_mask
return (z, z_m, z_logs, logdet, z_mask), (x_m, x_logs, x_mask), (attn, logw, logw_)
def preprocess(self, y, y_lengths, y_max_length):
if y_max_length is not None:
y_max_length = (y_max_length // 2) * 2
y = y[:,:,:y_max_length]
y_lengths = (y_lengths // 2) * 2
return y, y_lengths, y_max_length
class Encoder(nn.Module):
def __init__(self, n_vocab, out_c, h_c, f_c, f_c_dp, heads, layers, k_s, p=0.1, mean_only = True):
super().__init__()
self.h_c = h_c
self.mean_only = mean_only
self.emb = nn.Embedding(n_vocab, h_c)
nn.init.normal_(self.emb.weight, 0.0, h_c**(-0.5))
self.prenet = Prenet(in_c = h_c, hi_c = h_c, out_c = h_c, k_s = 5)
self.drop = nn.Dropout(p=p)
self.atten_layers = nn.ModuleList()
self.norm_layers = nn.ModuleList()
self.ffn_layers = nn.ModuleList()
for i in range(layers):
self.atten_layers.append(MultiheadAttention(h_c, h_c, heads, window_size=4, heads_share=True, p=0.1, block_length=None))
self.norm_layers.extend([Layernorm(h_c), Layernorm(h_c)])
self.ffn_layers.append(FFN(h_c, f_c, k_s, p))
self.proj_m = nn.Conv1d(h_c, out_c, 1)
if not mean_only:
self.proj_s = nn.Conv1d(h_c, out_c, 1)
self.proj_w = DurationPredictor(h_c, f_c_dp, k_s, p=p)
def forward(self,x, x_length):
x = self.emb(x) * torch.sqrt(torch.tensor(self.h_c)) # [b,t,h]
x = torch.transpose(x, 1, -1) # [b,h,t]
x_mask = torch.unsqueeze(sequence_mask(x_length, x.size(2)), 1).to(x.dtype)
x = self.prenet(x, x_mask)
atten_mask = x_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
for i in range(len(self.atten_layers)):
x = x * x_mask
y = self.drop(self.atten_layers[i](x, atten_mask))
x = self.norm_layers[2*i](x+y)
y = self.drop(self.ffn_layers[i](x, x_mask))
x = self.norm_layers[2*i+1](x+y)
x = x*x_mask
x_m = self.proj_m(x)
if not self.mean_only:
x_logs = self.proj_m(x)
else:
x_logs = torch.zeros_like(x_m)
logw = self.proj_w(x.detach(), x_mask)
return x_m, x_logs, logw, x_mask
class Decoder(nn.Module):
def __init__(self, in_c, hi_c, k_s, d_l =1 , blocks = 12, splits = 4,):
super().__init__()
self.flows = nn.ModuleList()
for _ in range(blocks):
self.flows.extend([ActNorm(in_c*2), InvConvNear(splits = splits), Couplinglayer(in_c*2, hi_c, k_s, d_l = d_l)])
def forward(self, x, x_mask = None, reverse = False):
if not reverse:
flows = self.flows
tot_logdet = 0
else:
flows = reversed(self.flows)
tot_logdet = None
b, c, t = x.shape
t = t - t%2
if x_mask is None:
mask = torch.ones(b,1,t//2)
else:
mask = x_mask[:,:,1::2]
x = x[:,:,:t].reshape(b, c, t//2, 2).transpose(2,3).contiguous().reshape(b,2*c,t//2) * mask # [b, 2c, t/2]
for f in flows:
x, logdet = f(x, mask, reverse = reverse)
if not reverse:
tot_logdet = tot_logdet + logdet
if x_mask is None:
mask = torch.ones(b,1,t)
else:
mask = x_mask[:,:,:t]
x = x.reshape(b,c,2,t//2).transpose(2,3).contiguous().reshape(b,c,t) * mask # [b, c, t]
return x, tot_logdet
def skip(self):
for f in self.flows:
f.skip()
def ddi_init(self):
for i, f in enumerate(self.flows):
if i % 3 == 0:
f.set_ddi()
|