Spaces:
Runtime error
Runtime error
File size: 12,668 Bytes
41989ff |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 |
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn.utils import weight_norm, spectral_norm, remove_weight_norm
# V2 model์ ๊ธฐ์ค์ผ๋ก ํ๋ค.
class ResBlock(nn.Module):
def __init__(self, channels, kernel_size):
"""
channels:
kernel_size: 3, 7, 11 ์ค ํ๋
"""
super(ResBlock, self).__init__()
# padding = (kernel_size-1)*dilation//2 ("same")
self.convs1 = nn.ModuleList([
weight_norm(nn.Conv1d(channels, channels, kernel_size, stride=1, dilation=1,
padding=(kernel_size-1)*1//2)),
weight_norm(nn.Conv1d(channels, channels, kernel_size, stride=1, dilation=1,
padding=(kernel_size-1)*1//2))
])
self.convs2 = nn.ModuleList([
weight_norm(nn.Conv1d(channels, channels, kernel_size, stride=1, dilation=3,
padding=(kernel_size-1)*3//2)),
weight_norm(nn.Conv1d(channels, channels, kernel_size, stride=1, dilation=1,
padding=(kernel_size-1)*1//2))
])
self.convs3 = nn.ModuleList([
weight_norm(nn.Conv1d(channels, channels, kernel_size, stride=1, dilation=5,
padding=(kernel_size-1)*5//2)),
weight_norm(nn.Conv1d(channels, channels, kernel_size, stride=1, dilation=1,
padding=(kernel_size-1)*1//2))
])
self.modules = [self.convs1, self.convs2, self.convs3]
# ํ๊ท ์ด 0, ํ์คํธ์ฐจ๊ฐ 0.01์ธ ์ ๊ท๋ถํฌ๋ก ๊ฐ์ค์น ์ด๊ธฐํ
for module in self.modules:
for conv in module:
nn.init.normal_(conv.weight, mean=0.0, std=0.01)
def forward(self, x):
"""
=====inputs=====
x: (B, channels, F) # mel-spectrogram์ผ๋ก๋ถํฐ ์ป์ด์ง input features
=====outputs=====
x: (B, channels, F) # mel-spectrogram์ผ๋ก๋ถํฐ ์ป์ด์ง output features
"""
for module in self.modules:
for conv in module:
y = F.leaky_relu(x, 0.1)
y = conv(y)
x = x + y
return x
def remove_weight_norm(self):
for module in self.modules:
for conv in module:
remove_weight_norm(conv)
class MRF(nn.Module):
def __init__(self, channels):
"""
channels:
"""
super(MRF, self).__init__()
self.res_blocks = nn.ModuleList([
ResBlock(channels, kernel_size=3),
ResBlock(channels, kernel_size=7),
ResBlock(channels, kernel_size=11),
])
def forward(self, x):
"""
=====inputs=====
x: (B, channels, F)
=====outputs=====
x: (B, channels, F)
"""
skip_list = []
for res_block in self.res_blocks:
skip_x = res_block(x)
skip_list.append(skip_x)
x = sum(skip_list) / len(self.res_blocks)
return x
def remove_weight_norm(self):
for block in self.res_blocks:
block.remove_weight_norm()
class Generator(nn.Module):
def __init__(self):
super(Generator, self).__init__()
self.pre_conv = weight_norm(nn.Conv1d(80, 128, kernel_size=7, stride=1, dilation=1,
padding=(7-1)//2)) # (B, 80, F) -> (B, 128, F)
nn.init.normal_(self.pre_conv.weight, mean=0.0, std=0.01) # ๋
ผ๋ฌธ ์ ์ ๊ตฌํ์๋ ์์.
self.up_convs = nn.ModuleList()
self.mrfs = nn.ModuleList()
ku = [16, 16, 4, 4]
for i in range(4):
# ku//2 ๋ฐฐ upsampling
channels = 128//(2**(i+1))
up_conv = weight_norm(nn.ConvTranspose1d(128//(2**i), channels, kernel_size=ku[i], stride=ku[i]//2,
padding=(ku[i]-ku[i]//2)//2))
# (B, 128, F) -(1)-> (B, 64, F*8) -(2)-> (B, 32, F*8*8) -(3)-> (B, 16, F*8*8*2) -(4)-> (B, 8, F*8*8*2*2)
nn.init.normal_(up_conv.weight, mean=0.0, std=0.01)
self.up_convs.append(up_conv)
# MRF
mrf = MRF(channels) # (B, channels, F) -> (B, channels, F)
self.mrfs.append(mrf)
self.post_conv = weight_norm(nn.Conv1d(8, 1, kernel_size=7, stride=1, dilation=1,
padding=(7-1)//2)) # (B, 8, F*256) -> (B, 1, F*256)
nn.init.normal_(self.post_conv.weight, mean=0.0, std=0.01)
def forward(self, x):
"""
=====inputs=====
x: (B, 80, F) # mel_spectrogram
=====outputs=====
x: (B, 1, F*256) # waveform
"""
x = self.pre_conv(x) # (B, 80, F) -> (B, 128, F)
for i in range(4):
x = F.leaky_relu(x, 0.1)
x = self.up_convs[i](x)
x = self.mrfs[i](x)
# final: (B, 128, F) -> (B, 8, F*256)
x = F.leaky_relu(x, 0.1)
x = self.post_conv(x) # (B, 8, F*256) -> (B, 1, F*256)
x = torch.tanh(x)
return x
def remove_weight_norm(self):
print('Removing weight norm...')
for l in self.up_convs:
remove_weight_norm(l)
for l in self.mrfs:
l.remove_weight_norm()
remove_weight_norm(self.pre_conv)
remove_weight_norm(self.post_conv)
class SubPD(nn.Module):
def __init__(self, period):
#period: 2, 3, 5, 7, 11 ์ค ํ๋
super(SubPD, self).__init__()
self.period = period
self.convs = nn.ModuleList()
channels = 1
for i in range(1, 5): # ๋
ผ๋ฌธ ์ ์์ ๋ณํ ๊ตฌํ ๋์ ๋
ผ๋ฌธ๋๋ก ๊ตฌํํจ.
conv = weight_norm(nn.Conv2d(channels, 2**(5+i), kernel_size=(5, 1), stride=(3, 1), dilation=1, padding=0))
self.convs.append(conv)
channels = 2**(5+i)
# (B, 1, [T/p]+1, p) -(1)-> (B, 64, ?, p) -(2)-> (B, 128, ?, p) -(3)-> (B, 256, ?, p) -(4)-> (B, 512, ?, p)
last_conv = weight_norm(nn.Conv2d(channels, 1024, kernel_size=(5, 1), stride=(1, 1), dilation=1,
padding=(2, 0))) # (B, 512, ?, p) -> (B, 1024, ?, p)
self.convs.append(last_conv)
self.post_conv = weight_norm(nn.Conv2d(1024, 1, kernel_size=(3, 1), stride=(1, 1), dilation=1,
padding=(1, 0))) # (B, 1024, ?, p) -> (B, 1, ?, p)
def forward(self, waveform):
"""
=====inputs=====
waveform: (B, 1, T)
=====outputs=====
x: (B, ?) # flatten๋ real/fake ๋ฒกํฐ (0~1(?))
features: feature๋ฅผ ๋ชจ๋ ๋ชจ์๋์ list (Feature Matching Loss๋ฅผ ๊ณ์ฐํ๊ธฐ ์ํจ.)
"""
features = []
B, _, T = waveform.size()
P = self.period
# padding
if T % P != 0:
padding = P - (T % P)
waveform = F.pad(waveform, (0, padding), "reflect") # ์์ชฝ์ 0, ๋ค์ชฝ์ padding๋งํผ ํจ๋ฉ, reflect๋ ๋ง์น ๊ฑฐ์ธ์ ๋ฐ์ฌ๋๋ฏ์ด ํจ๋ฉํจ.
# ex) [1, 2, 3, 4, 5]๋ฅผ ์์ชฝ์ 2, ๋ค์ชฝ์ 3๋งํผ reflect ๋ชจ๋๋ก padding -> [3, 2, 1, 2, 3, 4, 5, 4, 3, 2]
T += padding
# reshape
x = waveform.view(B, 1, T//P, P) # (B, 1, [T/P]+1, P)
for conv in self.convs:
x = conv(x)
x = F.leaky_relu(x, 0.1)
features.append(x)
x = self.post_conv(x)
features.append(x)
x = torch.flatten(x, 1, -1) # index 1๋ฒ์งธ ์ฐจ์๋ถํฐ ๋ง์ง๋ง ์ฐจ์๊น์ง flatten | (B, ?)
##### sigmoid ํจ์๋ cliping ๊ณผ์ ์ ๊ฑฐ์น์ง ์์๋ ๋๋๊ฐ...?
return x, features
class MPD(nn.Module):
def __init__(self):
super(MPD, self).__init__()
self.sub_pds = nn.ModuleList([
SubPD(2), SubPD(3), SubPD(5), SubPD(7), SubPD(11),
]) # (B, 1, T) -> (B, ?), features list
def forward(self, real_waveform, gen_waveform):
"""
=====inputs=====
real_waveform: (B, 1, T) # ์ค์ ์์ฑ
gen_waveform: (B, 1, T) # ์์ฑ ์์ฑ
=====outputs=====
real_outputs: (B, ?) list (len=5) # ์ค์ ์์ฑ์ ๋ํ SubPD outputs list
gen_outputs: (B, ?) list # ์์ฑ ์์ฑ์ ๋ํ SubPD outputs list
real_features: features list # ์ค์ ์์ฑ์ ๋ํ SubPD features list
gen_features: features list # ์์ฑ ์์ฑ์ ๋ํ SubPD features list
"""
real_outputs, gen_outputs, real_features, gen_features = [], [], [], []
for sub_pd in self.sub_pds:
real_output, real_feature = sub_pd(real_waveform)
gen_output, gen_feature = sub_pd(gen_waveform)
real_outputs.append(real_output)
gen_outputs.append(gen_output)
real_features.append(real_feature)
gen_features.append(gen_feature)
return real_outputs, gen_outputs, real_features, gen_features
class SubSD(nn.Module):
def __init__(self, first=False):
"""
first: boolean (first๊ฐ True์ด๋ฉด spectral normalization์ ์ ์ฉํ๋ค.)
"""
super(SubSD, self).__init__()
norm = spectral_norm if first else weight_norm # first๊ฐ True์ด๋ฉด spectral_norm, ๊ทธ๋ ์ง ์์ผ๋ฉด weight_norm
self.convs = nn.ModuleList([ # Mel-GAN ๋
ผ๋ฌธ์ ๋ง๊ฒ ๊ตฌํ
norm(nn.Conv1d(1, 16, kernel_size=15, stride=1, padding=(15-1)//2)), # (B, 1, T) -> (B, 16, T)
norm(nn.Conv1d(16, 64, kernel_size=41, stride=4, groups=4, padding=(41-1)//2)), # (B, 16, T) -> (B, 64, T/4(?))
norm(nn.Conv1d(64, 256, kernel_size=41, stride=4, groups=16, padding=(41-1)//2)), # (B, 64, T/4(?)) -> (B, 256, T/16(?))
norm(nn.Conv1d(256, 1024, kernel_size=41, stride=4, groups=64, padding=(41-1)//2)), # (B, 256, T/16(?)) -> (B, 1024, T/64(?))
norm(nn.Conv1d(1024, 1024, kernel_size=41, stride=4, groups=256, padding=(41-1)//2)), # (B, 1024, T/64(?)) -> (B, 1024, T/256(?))
norm(nn.Conv1d(1024, 1024, kernel_size=5, stride=1, padding=(5-1)//2)) # (B, 1024, T/256(?)) -> (B, 1024, T/256(?))
])
self.post_conv = norm(nn.Conv1d(1024, 1, kernel_size=3, stride=1, padding=(3-1)//2)) # (B, 1024, ?) -> (B, 1, ?)
def forward(self, waveform):
"""
=====inputs=====
waveform: (B, 1, T)
=====outputs=====
x: (B, ?) # flatten๋ real/fake ๋ฒกํฐ (0~1(?))
features: feature๋ฅผ ๋ชจ๋ ๋ชจ์๋์ list (Feature Matching Loss๋ฅผ ๊ณ์ฐํ๊ธฐ ์ํจ.)
"""
features = []
x = waveform
for conv in self.convs:
x = conv(x)
x = F.leaky_relu(x, 0.1)
features.append(x)
x = self.post_conv(x) # (B, 1, ?)
features.append(x)
x = x.squeeze(1) # (B, ?)
##### sigmoid ํจ์๋ cliping ๊ณผ์ ์ ๊ฑฐ์น์ง ์์๋ ๋๋๊ฐ...?
return x, features
class MSD(nn.Module):
def __init__(self):
super(MSD, self).__init__()
self.sub_sds = nn.ModuleList([
SubSD(first=True), SubSD(), SubSD()
]) # (B, 1, T) -> (B, ?), features list
self.avgpool = nn.AvgPool1d(kernel_size=4, stride=2, padding=2) # x2 down sampling
def forward(self, real_waveform, gen_waveform):
"""
=====inputs=====
real_waveform: (B, 1, T) # ์ค์ ์์ฑ
gen_waveform: (B, 1, T) # ์์ฑ ์์ฑ
=====outputs=====
real_outputs: (B, ?) list (len=3) # ์ค์ ์์ฑ์ ๋ํ SubSD outputs list
gen_outputs: (B, ?) list # ์์ฑ ์์ฑ์ ๋ํ SubSD outputs list
real_features: features list # ์ค์ ์์ฑ์ ๋ํ SubSD features list
gen_features: features list # ์์ฑ ์์ฑ์ ๋ํ SubSD features list
"""
real_outputs, gen_outputs, real_features, gen_features = [], [], [], []
for idx, sub_sd in enumerate(self.sub_sds):
if idx != 0:
real_waveform = self.avgpool(real_waveform)
gen_waveform = self.avgpool(gen_waveform)
real_output, real_feature = sub_sd(real_waveform)
gen_output, gen_feature = sub_sd(gen_waveform)
real_outputs.append(real_output)
gen_outputs.append(gen_output)
real_features.append(real_feature)
gen_features.append(gen_feature)
return real_outputs, gen_outputs, real_features, gen_features |