File size: 4,350 Bytes
41989ff
 
8fde97d
41989ff
 
 
 
 
dcef047
 
 
 
41989ff
8fde97d
 
dcef047
371ba49
dcef047
 
 
8fde97d
 
 
fa050b7
 
4936e8e
 
8fde97d
 
 
3e6402f
fa050b7
3e6402f
4936e8e
 
8fde97d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41989ff
 
 
 
 
8fde97d
 
41989ff
 
 
8fde97d
41989ff
8fde97d
41989ff
 
 
 
 
 
 
 
8fde97d
41989ff
8fde97d
41989ff
 
b35e31e
b1f349f
dcef047
41989ff
 
 
 
 
 
 
 
 
fa050b7
41989ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fa050b7
41989ff
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
import streamlit as st
import soundfile as sf
import os, re
import torch
from datautils import *
from model import Generator as Glow_model
from Hmodel import Generator as GAN_model

st.set_page_config(
    page_title = "μ†Œμ‹  Team Demo",
    page_icon = "πŸ”‰",
)

class TTS:
    def __init__(self, model_variant):
        global device
        device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        torch.cuda.manual_seed(1234) if torch.cuda.is_available() else None
        self.flowgenerator = Glow_model(n_vocab = 70, h_c= 192, f_c = 768, f_c_dp = 256, out_c = 80, k_s = 3, k_s_dec = 5, heads=2, layers_enc = 6).to(device)
        self.voicegenerator = GAN_model().to(device)
        if model_variant == '은식':
            name = '1038_eunsik_01'
            last_chpt1 = './log/1038_eunsik_01/Glow_TTS_00289602.pt'
        elif model_variant == 'KSS':
            last_chpt1 = './log/KSS/Glow_TTS_00280641.pt'
        check_point = torch.load(last_chpt1, map_location = device)
        self.flowgenerator.load_state_dict(check_point['generator'])
        self.flowgenerator.decoder.skip()
        self.flowgenerator.eval()
        if model_variant == '은식':
            last_chpt2 = './log/1038_eunsik_01/HiFI_GAN_00257000.pt'
        elif model_variant == 'KSS':
            last_chpt2 = './log/KSS/HiFi_GAN_00135000.pt'
        check_point = torch.load(last_chpt2, map_location = device)
        self.voicegenerator.load_state_dict(check_point['gen_model'])
        self.voicegenerator.eval()
        self.voicegenerator.remove_weight_norm()
    
    def inference(self, input_text):
        filters = '([.,!?])'
        sentence = re.sub(re.compile(filters), '', input_text)
        x = text_to_sequence(sentence)
        x = torch.autograd.Variable(torch.tensor(x).unsqueeze(0)).to(device).long()
        x_length = torch.tensor(x.shape[1]).unsqueeze(0).to(device)
        
        with torch.no_grad():
            noise_scale = .667
            length_scale = 1.0
            (y_gen_tst, *_), *_, (attn_gen, *_) = self.flowgenerator(x, x_length, gen = True, noise_scale = noise_scale, length_scale = length_scale)
            y = self.voicegenerator(y_gen_tst)
            audio = y.squeeze() * 32768.0
            voice = audio.cpu().numpy().astype('int16')
        return voice

def init_session_state():
    # Model
    if "init_model" not in st.session_state:
        st.session_state.init_model = True
        st.session_state.model_variant = "은식"
        st.session_state.TTS = TTS("은식")

def update_model():
    if st.session_state.model_variant == "KSS":
        st.session_state.TTS = TTS("KSS")
    elif st.session_state.model_variant == "은식":
        st.session_state.TTS = TTS("은식")

def update_session_state(state_id, state_value):
    st.session_state[f"{state_id}"] = state_value
    
def centered_text(input_text, mode = "h1",):
    st.markdown(
        f"<{mode} style='text-align: center;'>{input_text}</{mode}>", unsafe_allow_html = True)

def generate_voice(input_text):
    # TTS Inference
    voice = st.session_state.TTS.inference(input_text)
    
    # Play audio
    st.audio(voice,sample_rate = 22050)
    st.caption("Generated Voice by" + st.session_state.model_variant)


init_session_state()

centered_text("πŸ”‰ μ†Œμ‹  Team Demo")
centered_text("mel generator : Glow-TTS, vocoder : HiFi-GAN", "h5")
st.write(" ")

mode = "p"
st.markdown(
    f"<{mode} style='text-align: left;'><small>This is a demo trained by our vocie. The voice \"KSS\" is traind by KSS Dataset. \"은식\" which is about 1 hour audio is finetuned from \"KSS\". We got this deomoformat from Nix-TTS Interactive Demo</small></{mode}>",
    unsafe_allow_html = True
)

st.write(" ")
st.write(" ")
col1, col2 = st.columns(2)

with col1:
    input_text = st.text_input(
        "ν•œκΈ€λ‘œλ§Œ μž…λ ₯ν•΄μ£Όμ„Έμš”",
        value = "λ”₯λŸ¬λ‹μ€ 정말 μž¬λ°Œμ–΄!",
    )
with col2:
    model_variant = st.selectbox("λͺ©μ†Œλ¦¬ μ„ νƒν•΄μ£Όμ„Έμš”", options = ["KSS", "은식"], index = 1)
    if model_variant != st.session_state.model_variant:
        # Update variant choice
        update_session_state("model_variant", model_variant)
        # Re-load model
        update_model()

button_gen = st.button("Generate Voice")
if button_gen == True:
    generate_voice(input_text)
    st.balloons()