File size: 38,582 Bytes
1a91ed2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5e764fc
1a91ed2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5e764fc
1a91ed2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5e764fc
1a91ed2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
from torch import nn
import numpy as np
import torch.nn.functional as F
from torch.nn.utils import weight_norm
import math
import torch

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
symbol_length = 73

class GlowTTS(nn.Module):
    def __init__(self):
        super().__init__()
        self.encoder = Encoder()
        self.decoder = Decoder()
        
    def forward(self, text, text_len, mel=None, mel_len=None, inference=False, noise_scale=1., length_scale=1.):
        """
        =====inputs=====
        text: (B, T)
        text_len: (B) list
        mel: (B, 80, F)
        mel_len: (B) list
        inference: True/False
        =====outputs=====
        (tuple) (z, z_mean, z_log_std, log_det, z_mask)
            z(training) or y(inference): (B, 80, F) | z: latent representation, y: mel-spectrogram
            z_mean: (B, 80, F)
            z_log_std: (B, 80, F)
            log_det: (B) or None
            z_mask: (B, 1, F)
        (tuple) (x_mean, x_log_std, x_mask)
            x_mean: (B, 80, T)
            x_log_std: (B, 80, T)
            x_mask: (B, 1, T)
        (tuple) (attention_alignment, x_log_dur, log_d)
            attention_alignment: (B, T, F)
            x_log_dur: (B, 1, T) | 추측한 duration의 log scale
            log_d: (B, 1, T) | 적절하다고 추측한 alignment에서의 duration의 log scale
        """
        x_mean, x_log_std, x_log_dur, x_mask = self.encoder(text, text_len)
            # x_std, x_dur 에 log를 붙인 이유는, 논문 저자의 구현에서는 log가 취해진 값으로 간주하기 때문이다.
        y, y_len = mel, mel_len
        
        if not inference: # training
            y_max_len = y.size(2)
        else: # inference
            dur = torch.exp(x_log_dur) * x_mask  * length_scale # (B, 1, T)
            ceil_dur = torch.ceil(dur) # (B, 1, T)
            y_len = torch.clamp_min(torch.sum(ceil_dur, [1, 2]), 1).long() # (B)
                # ceil_dur을 [1, 2] 축에 대해 sum한 뒤 최솟값이 1이상이 되도록 설정. 정수 long 타입으로 반환한다.
            y_max_len = None
        
        # preprocessing
        if y_max_len is not None:
            y_max_len = (y_max_len // 2) * 2 # 홀수면 1을 빼서 짝수로 만든다.
            y = y[:, :, :y_max_len] # y_max_len에 맞게 y를 조정
            y_len = (y_len // 2) * 2 # y_len이 홀수이면 1을 빼서 짝수로 만든다.
        
        # make the z_mask
        B = len(y_len)
        temp_max = max(y_len)
        z_mask = torch.zeros((B, 1, temp_max), dtype=torch.bool).to(device) # (B, 1, F)
        for idx, length in enumerate(y_len):
            z_mask[idx, :, :length] = True
        
        # make the attention_mask
        attention_mask = x_mask.unsqueeze(3) * z_mask.unsqueeze(2) # (B, 1, T, 1) * (B, 1, 1, F) = (B, 1, T, F)
            # 주의: Encoder의 attention_mask와는 다른 mask임.
        
        if not inference: # training
            z, log_det = self.decoder(y, z_mask, reverse=False)
            with torch.no_grad():
                x_std_squared_root = torch.exp(-2 * x_log_std) # (B, 80, T)
                logp1 = torch.sum(-0.5 * math.log(2 * math.pi) - x_log_std, [1]).unsqueeze(-1) # [(B, T, F)
                logp2 = torch.matmul(x_std_squared_root.transpose(1, 2), -0.5 * (z ** 2)) # [(B, T, 80) * (B, 80, F) = (B, T, F)
                logp3 = torch.matmul((x_mean * x_std_squared_root).transpose(1,2), z) # (B, T, 80) * (B, 80, F) = (B, T, F)
                logp4 = torch.sum(-0.5 * (x_mean ** 2) * x_std_squared_root, [1]).unsqueeze(-1) # (B, T, F)
                logp = logp1 + logp2 + logp3 + logp4 # (B, T, F)
                """
                logp는 normal distribution N(x_mean, x_std)의 maximum log-likelihood이다.
                sum(log(N(z;x_mean, x_std)))를 정규분포 식을 이용하여 분배법칙으로 풀어내면 위와 같은 식이 도출된다.
                """
                attention_alignment = maximum_path(logp, attention_mask.squeeze(1)).detach() # alignment (B, T, F)
             
            z_mean = torch.matmul(attention_alignment.transpose(1, 2), x_mean.transpose(1, 2)) # (B, F, T) * (B, T, 80) -> (B, F, 80)
            z_mean = z_mean.transpose(1, 2) # (B, 80, F)
            z_log_std = torch.matmul(attention_alignment.transpose(1, 2), x_log_std.transpose(1, 2)) # (B, F, T) * (B, T, 80) -> (B, F, 80)
            z_log_std = z_log_std.transpose(1, 2) # (B, 80, F)
            log_d = torch.log(1e-8 + torch.sum(attention_alignment, -1)).unsqueeze(1) * x_mask # (B, 1, T) | alignment에서 형성된 duration의 log scale
            return (z, z_mean, z_log_std, log_det, z_mask), (x_mean, x_log_std, x_mask), (attention_alignment, x_log_dur, log_d)
            
        else: # inference
            # generate_path (make attention_alignment using ceil(x_dur))
            attention_alignment = generate_path(ceil_dur.squeeze(1), attention_mask.squeeze(1)) # (B, T, F)
            z_mean = torch.matmul(attention_alignment.transpose(1, 2), x_mean.transpose(1, 2)) # (B, F, T) * (B, T, 80) -> (B, F, 80)
            z_mean = z_mean.transpose(1, 2) # (B, 80, F)
            z_log_std = torch.matmul(attention_alignment.transpose(1, 2), x_log_std.transpose(1, 2)) # (B, F, T) * (B, T, 80) -> (B, F, 80)
            z_log_std = z_log_std.transpose(1, 2) # (B, 80, F)
            log_d = torch.log(1e-8 + torch.sum(attention_alignment, -1)).unsqueeze(1) * x_mask # (B, 1, T) | alignment에서 형성된 duration의 log scale
            
            z = (z_mean + torch.exp(z_log_std) * torch.randn_like(z_mean) * noise_scale) * z_mask # z(latent representation) 생성
            y, log_det = self.decoder(z, z_mask, reverse=True) # mel-spectrogram 생성
            return (y, z_mean, z_log_std, log_det, z_mask), (x_mean, x_log_std, x_mask), (attention_alignment, x_log_dur, log_d)
        
##### 아래 논문의 구현이 훨씬 빠르다. 이 논문 구현을 보고 위의 구현을 변경할 필요가 있다. #####
def maximum_path(value, mask, max_neg_val=-np.inf):
    """ Numpy-friendly version. It's about 4 times faster than torch version.
    value: [b, t_x, t_y]
    mask: [b, t_x, t_y]
    """
    value = value * mask

    device = value.device
    dtype = value.dtype
    value = value.cpu().detach().numpy()
    mask = mask.cpu().detach().numpy().astype(bool)

    b, t_x, t_y = value.shape
    direction = np.zeros(value.shape, dtype=np.int64)
    v = np.zeros((b, t_x), dtype=np.float32)
    x_range = np.arange(t_x, dtype=np.float32).reshape(1,-1)
    for j in range(t_y):
        v0 = np.pad(v, [[0,0],[1,0]], mode="constant", constant_values=max_neg_val)[:, :-1]
        v1 = v
        max_mask = (v1 >= v0)
        v_max = np.where(max_mask, v1, v0)
        direction[:, :, j] = max_mask

        index_mask = (x_range <= j)
        v = np.where(index_mask, v_max + value[:, :, j], max_neg_val)
    direction = np.where(mask, direction, 1)

    path = np.zeros(value.shape, dtype=np.float32)
    index = mask[:, :, 0].sum(1).astype(np.int64) - 1
    index_range = np.arange(b)
    for j in reversed(range(t_y)):
        path[index_range, index, j] = 1
        index = index + direction[index_range, index, j] - 1
    path = path * mask.astype(np.float32)
    path = torch.from_numpy(path).to(device=device, dtype=dtype)
    return path


def generate_path(duration, mask):
    """
    duration: [b, t_x]
    mask: [b, t_x, t_y]
    """
    device = duration.device

    b, t_x, t_y = mask.shape # (B, T, F)
    cum_duration = torch.cumsum(duration, 1) # 누적합, (B, T) 
    path = torch.zeros(b, t_x, t_y, dtype=mask.dtype).to(device=device) # (B, T, F)

    cum_duration_flat = cum_duration.view(b * t_x) # (B*T)
    path = sequence_mask(cum_duration_flat, t_y).to(mask.dtype) # (B*T, F)
    path = path.view(b, t_x, t_y) # (B, T, F)
    path = path.to(torch.float32)
    path = path - F.pad(path, convert_pad_shape([[0, 0], [1, 0], [0, 0]]))[:,:-1] # (B, T, F) # T의 차원 맨 앞을 -1한다.
    path = path * mask
    return path

def sequence_mask(length, max_length=None):
    if max_length is None:
        max_length = length.max()
    x = torch.arange(max_length, dtype=length.dtype, device=length.device)
    return x.unsqueeze(0) < length.unsqueeze(1)

def convert_pad_shape(pad_shape):
    l = pad_shape[::-1] # [[0, 0], [p, p], [0, 0]]
    pad_shape = [item for sublist in l for item in sublist] # [0, 0, p, p, 0, 0]
    return pad_shape

def MAS(path, logp, T_max, F_max):
    """
    Glow-TTS의 모듈인 maximum_path의 모듈
    MAS 알고리즘을 수행하는 함수이다.
    =====inputs=====
    path: (T, F)
    logp: (T, F)
    T_max: (1)
    F_max: (1)
    =====outputs=====
    path: (T, F) | 0과 1로 구성된 alignment
    """
    neg_inf = -1e9 # negative infinity
    # forward
    for j in range(F_max):
        for i in range(max(0, T_max + j - F_max), min(T_max, j + 1)): # 평행사변형을 생각하라.
            # Q_i_j-1 (current)
            if i == j:
                Q_cur = neg_inf
            else:
                Q_cur = logp[i, j-1] # j=0이면 i도 0이므로 j-1을 사용해도 된다.
            
            # Q_i-1_j-1 (previous)
            if i==0:
                if j==0:
                    Q_prev = 0. # i=0, j=0인 경우에는 logp 값만 반영해야 한다.
                else:
                    Q_prev = neg_inf # i=0인 경우에는 Q_i-1_j-1을 반영하지 않아야 한다.
            else:
                Q_prev = logp[i-1, j-1]
            
            # logp에 Q를 갱신한다.
            logp[i, j] = max(Q_cur, Q_prev) + logp[i, j]
    
    # backtracking
    idx = T_max - 1
    for j in range(F_max-1, -1, -1): # F_max-1부터 -1까지(-1 포함 없이 0까지) -1씩 감소
        path[idx, j] = 1
        if idx != 0:
            if (logp[idx, j-1] < logp[idx-1, j-1]) or (idx == j):
                idx -= 1
    
    return path
        

def maximum_path(logp, attention_mask):
    """
    Glow-TTS에 사용되는 모듈
    MAS를 사용하여 alignment를 찾아주는 역할을 한다.
    논문 저자 구현에서는 cpython을 이용하여 병렬 처리를 구현한 듯 하나
    여기에서는 python만을 이용하여 구현하였다.
    =====inputs=====
    logp: (B, T, F) | N(x_mean, x_std)의 log-likelihood
    attention_mask: (B, T, F)
    =====outputs=====
    path: (B, T, F) | alignment
    """
    B = logp.shape[0]
    
    logp = logp * attention_mask
    # 계산은 CPU에서 실행되도록 하기 위해 기존의 device를 저장하고 .cpu().numpy()를 한다.
    logp_device = logp.device
    logp_type = logp.dtype
    logp = logp.data.cpu().numpy().astype(np.float32)
    attention_mask = attention_mask.data.cpu().numpy()
    
    path = np.zeros_like(logp).astype(np.int32) # (B, T, F)
    T_max = attention_mask.sum(1)[:, 0].astype(np.int32) # (B)
    F_max = attention_mask.sum(2)[:, 0].astype(np.int32) # (B)
    
    # MAS 알고리즘
    for idx in range(B):
        path[idx] = MAS(path[idx], logp[idx], T_max[idx], F_max[idx]) # (T, F)
    return torch.from_numpy(path).to(device=logp_device, dtype=logp_type)

def generate_path(ceil_dur, attention_mask):
    """
    Glow-TTS에 사용되는 모듈
    inference 과정에서 alignment를 만들어낸다.
    =====input=====
    ceil_dur: (B, T) | 추론한 duration에 ceil 연산한 것 | ex) [[2, 1, 2, 2, ...], [1, 2, 1, 3, ...], ...]
    attention_mask: (B, T, F)
    =====output=====
    path: (B, T, F) | alignment
    """
    B, T, Frame = attention_mask.shape
    cum_dur = torch.cumsum(ceil_dur, 1)
    cum_dur = cum_dur.to(torch.int32) # (B, T) | 누적합 | ex) [[2, 3, 5, 7, ...], [1, 3, 4, 7, ...], ...]
    path = torch.zeros(B, T, Frame).to(ceil_dur.device) # (B, T, F) | all False(0)
    
    # make the sequence_mask
    for b, batch_cum_dur in enumerate(cum_dur):
        for t, each_cum_dur in enumerate(batch_cum_dur):
            path[b, t, :each_cum_dur] = torch.ones((1, 1, each_cum_dur)).to(ceil_dur.device)
                # cum_dur로부터 True(1)를 path에 새겨넣는다.
    path = path - F.pad(path, (0, 0, 1, 0, 0, 0))[:, :-1] # (B, T, F)
    """
    ex) batch를 잠시 제외해두고 예시를 든다.
    [[1, 1, 0, 0, 0, 0, 0],   [[0, 0, 0, 0, 0, 0, 0],    [[1, 1, 0, 0, 0, 0, 0],
     [1, 1, 1, 0, 0, 0, 0], -  [1, 1, 0, 0, 0, 0, 0],  =  [0, 0, 1, 0, 0, 0, 0],
     [1, 1, 1, 1, 1, 0, 0],    [1, 1, 1, 0, 0, 0, 0],     [0, 0, 0, 1, 1, 0, 0],
     [1, 1, 1, 1, 1, 1, 1]]    [1, 1, 1, 1, 1, 0, 0]]     [0, 0, 0, 0, 0, 1, 1]]
    """
    path = path * attention_mask
    return path

class Decoder(nn.Module):
    def __init__(self):
        super().__init__()
        self.flows = nn.ModuleList()
        for i in range(12):
            self.flows.append(ActNorm())
            self.flows.append(InvertibleConv())
            self.flows.append(AffineCouplingLayer())
        
    def forward(self, x, x_mask, reverse=False):
        """
        =====inputs=====
        x: (B, 80, F) | mel-spectrogram(Direct) OR latent representation(Reverse)
        x_mask: (B, 1, F)
        =====outputs=====
        z: (B, 80, F) | latent representation(Direct) OR mel-spectrogram(Reverse)
        total_log_det: (B) or None | log determinant
        """
        if not reverse:
            flows = self.flows
            total_log_det = 0
        else:
            flows = reversed(self.flows)
            total_log_det = None
        
        x, x_mask = Squeeze(x, x_mask) # (B, 80, F) -> (B, 160, F//2) | (B, 1, F) -> (B, 1, F//2)
        
        for f in flows:
            if not reverse:
                x, log_det = f(x, x_mask, reverse=reverse)
                total_log_det += log_det
            else:
                x, _ = f(x, x_mask, reverse=reverse)
                
        x, x_mask = Unsqueeze(x, x_mask) # (B, 160, F//2) -> (B, 80, F) | (B, 1, F//2) -> (B, 1, F)
        
        return x, total_log_det

"""
Decoder는 Glow: Generative Flow with Invertible 1×1 Convolutions 논문의 기본 구조를 따라간다.
Glow 논문: https://arxiv.org/pdf/1807.03039.pdf
"""
def Squeeze(x, x_mask):
    """
    Decoder의 preprocessing
    =====inputs=====
    x: (B, 80, F) | mel_spectrogram or latent representation
    x_mask: (B, 1, F)
    =====outputs=====
    x: (B, 160, F//2) | F//2 = [F/2] ([]: 가우스 기호)
    x_mask: (B, 160, F//2)
    """
    B, C, F = x.size()
    x = x[:, :, :(F//2)*2] # F가 홀수이면 맨 뒤 한 frame을 버림.
    x = x.view(B, C, F//2, 2) # (B, 80, F//2, 2)
    x = x.permute(0, 3, 1, 2).contiguous() # (B, 2, 80, F//2)
    x = x.view(B, C*2, F//2) # (B, 160, F//2)
    
    x_mask = x_mask[:, :, 1::2] # (B, 1, F//2) frame을 1부터 한칸씩 건너뛴다.
    x = x * x_mask # masking
    return x, x_mask

class ActNorm(nn.Module):
    """
    Decoder의 1번째 모듈
    """
    def __init__(self):
        super().__init__()
        self.log_s = nn.Parameter(torch.zeros(1, 160, 1)) # Glow 논문의 s에서 log를 취한 것이다. 즉, log[s]
        self.bias = nn.Parameter(torch.zeros(1, 160, 1))
        
    def forward(self, x, x_mask, reverse=False):
        """
        =====inputs=====
        x: (B, 160, F//2) | mel_spectrogram features
        x_mask: (B, 1, F//2) | mel_spectrogram features의 mask. (Decoder의 Squeeze에서 변형됨.)
        =====outputs=====
        z: (B, 160, F//2)
        log_det: (B) or None | log_determinant, reverse=True이면 None 반환
        """
        x_len = torch.sum(x_mask, [1, 2]) # (B) | 1, 2차원의 값을 더한다. cf. [1, 2] 대신 [2]만 사용하면 shape가 (B, 1)이 된다.
        
        if not reverse:
            z = (x * torch.exp(self.log_s) + self.bias) * x_mask # function & masking
            log_det = x_len * torch.sum(self.log_s) # log_determinant
                # Glow 논문의 Table 1을 확인하라. log_s를 log[s]라 볼 수 있다.
                # determinant 대신 log_determinant를 사용하는 이유는 det보다 작은 수치와 적은 계산량 때문으로 추측된다.
        else:
            z = ((x - self.bias) / torch.exp(self.log_s)) * x_mask # inverse function & masking
            log_det = None
        
        return z, log_det

class InvertibleConv(nn.Module):
    """
    Decoder의 2번째 모듈
    """
    def __init__(self):
        super().__init__()
        Q = torch.linalg.qr(torch.FloatTensor(4, 4).normal_())[0] # (4, 4)
        """
        torch.FloatTensor(4, 4).normal_(): 정규분포 N(0, 1)에서 무작위로 추출한 4x4 matrix
        Q, R = torch.linalg.qr(W): QR분해 | Q: 직교 행렬, R: upper traiangular 행렬 cf. det(Q) = 1 or -1
        """
        if torch.det(Q) < 0:
            Q[:, 0] = -1 * Q[:, 0] # 0번째 열의 부호를 바꿔서 det(Q) = -1로 만든다.
        self.W = nn.Parameter(Q)
    
    def forward(self, x, x_mask, reverse=False):
        """
        =====inputs=====
        x: (B, 160, F//2)
        x_mask: (B, 1, F//2)
        =====outputs=====
        z: (B, 160, F//2)
        log_det: (B) or None
        """
        B, C, f = x.size() # B, 160, F//2
        x_len = torch.sum(x_mask, [1, 2]) # (B)
        
        # channel mixing
        x = x.view(B, 2, C//4, 2, f) # (B, 2, 40, 2, F//2)
        x = x.permute(0, 1, 3, 2, 4).contiguous() # (B, 2, 2, 40, F//2)
        x = x.view(B, 4, C//4, f) # (B, 4, 40, F//2)
        
        # 편의상 log_det부터 구한다.
        if not reverse:
            weight = self.W
            log_det = (C/4) * x_len * torch.logdet(self.W) # (B) | torch.logdet(W): log(det(W))
                # height = C/4, width = x_len 인 상황임을 고려하면 Glow 논문의 log_determinant 식과 같다.
        else:
            weight = torch.linalg.inv(self.W) # inverse matrix
            log_det = None
        
        weight = weight.view(4, 4, 1, 1)
        z = F.conv2d(x, weight) # (B, 4, 40, F//2) * (4, 4, 1, 1) -> (B, 4, 40, F//2)
        """
        F.conv2d(x, weight)의 convolution 연산은 다음과 같이 생각해야 한다.
        (B, 4, 40, F//2): (batch_size, in_channels, height, width)
        (4, 4, 1, 1): (out_channels, in_channels/groups, kernel_height, kernel_width)
        
        즉, nn.Conv2d(4, 4, kernel_size=(1, 1))인 상황에 가중치를 준 것이다.
        """
        
        # channel unmixing
        z = z.view(B, 2, 2, C//4, f) # (B, 4, 40, F//2) -> (B, 2, 2, 40, F//2)
        z = z.permute(0, 1, 3, 2, 4).contiguous() # (B, 2, 40, 2, F//2)
        z = z.view(B, C, f) * x_mask # (B, 160, F//2) & masking
        return z, log_det
    
class WN(nn.Module):
    """
    Decoder의 3번째 모듈인 AffineCouplingLayer의 모듈
    
    해당 구조는 WAVEGLOW: A FLOW-BASED GENERATIVE NETWORK FOR SPEECH SYNTHESIS 로부터 제안되었다.
    WaveGlow 논문: https://arxiv.org/pdf/1811.00002.pdf
    """
    def __init__(self, dilation_rate=1):
        super().__init__()
        self.in_layers = nn.ModuleList()
        self.res_skip_layers = nn.ModuleList()
        
        for i in range(4):
            dilation = dilation_rate ** i # NVIDIA WaveGlow에서는 dilation_rate=2이지만, 여기에서는 1이므로 의미는 없다.
            in_layer = weight_norm(nn.Conv1d(192, 2*192, kernel_size=5, dilation=dilation,
                                 padding=((5-1) * dilation)//2)) # (B, 192, F//2) -> (B, 2*192, F//2)
            self.in_layers.append(in_layer)
            
            if i < 3:
                res_skip_layer = weight_norm(nn.Conv1d(192, 2*192, kernel_size=1)) # (B, 192, F//2) -> (B, 2*192, F//2)
            else:
                res_skip_layer = weight_norm(nn.Conv1d(192, 192, kernel_size=1)) # (B, 192, F//2) -> (B, 192, F//2)
            self.res_skip_layers.append(res_skip_layer)
        
        self.dropout = nn.Dropout(0.05)
    
    def forward(self, x, x_mask):
        """
        =====inputs=====
        x: (B, 192, F//2)
        x_mask: (B, 1, F//2)
        =====outputs=====
        output: (B, 192, F//2)
        """
        output = torch.zeros_like(x) # (B, 192, F//2) all zeros
        
        for i in range(4):
            x_in = self.in_layers[i](x) # (B, 192, F//2) -> (B, 2*192, F//2)
            x_in = self.dropout(x_in) # dropout
            
            # fused add tanh sigmoid multiply
            tanh_act = torch.tanh(x_in[:, :192, :]) # (B, 192, F//2)
            sigmoid_act = torch.sigmoid(x_in[:, 192:, :]) # (B, 192, F//2)
            
            acts = sigmoid_act * tanh_act # (B, 192, F//2)
            
            x_out = self.res_skip_layers[i](acts) # (B, 192, F//2) -> (B, 2*192, F//2) or [last](B, 192, F//2)
            if i < 3:
                x = (x + x_out[:, :192, :]) * x_mask # residual connection & masking
                output += x_out[:, 192:, :] # add output
            else:
                output += x_out # (B, 192, F//2)
        
        output = output * x_mask # masking
        return output

class AffineCouplingLayer(nn.Module):
    """
    Decoder의 3번째 모듈
    """
    def __init__(self):
        super().__init__()
        self.start_conv = weight_norm(nn.Conv1d(160//2, 192, kernel_size=1)) # (B, 80, F//2) -> (B, 192, F//2)
        self.wn = WN()
        self.end_conv = nn.Conv1d(192, 160, kernel_size=1) # (B, 192, F//2) -> (B, 160, F//2)
        # end_conv의 초기 가중치를 0으로 설정하는 것이 처음에 학습하지 않는 역할을 하며, 이는 학습 안정화에 도움이 된다.
        self.end_conv.weight.data.zero_() # weight를 0으로 초기화
        self.end_conv.bias.data.zero_() # bias를 0으로 초기화
        
    def forward(self, x, x_mask, reverse=False):
        """
        =====inputs=====
        x: (B, 160, F//2)
        x_mask: (B, 1, F//2)
        =====outputs=====
        z: (B, 160, F//2)
        log_det: (B) or None
        """
        B, C, f = x.size() # B, 160, F//2
        x_0, x_1 = x[:, :C//2, :], x[:, C//2:, :] # split: (B, 80, F//2) x2
        
        x = self.start_conv(x_0) * x_mask # (B, 80, F//2) -> (B, 192, F//2) & masking
        x = self.wn(x, x_mask) # (B, 192, F//2)
        out = self.end_conv(x) # (B, 192, F//2) -> (B, 160, F//2)
        
        z_0 = x_0 # (B, 80, F//2)
        m = out[:, :C//2, :] # (B, 80, F//2)
        log_s = out[:, C//2:, :] # (B, 80, F//2)
        
        if not reverse:
            z_1 = (torch.exp(log_s) * x_1 + m) * x_mask # (B, 80, F//2) | function & masking 
            log_det = torch.sum(log_s * x_mask, [1, 2]) # (B)
        else:
            z_1 = (x_1 - m) / torch.exp(log_s) * x_mask # (B, 80, F//2) | inverse function & masking
            log_det = None
        
        z = torch.cat([z_0, z_1], dim=1) # (B, 160, F//2)
        return z, log_det
    
def Unsqueeze(x, x_mask):
    """
    Decoder의 postprocessing
    =====inputs=====
    x: (B, 160, F//2)
    x_mask: (B, 1, F//2)
    =====outputs=====
    x: (B, 80, F)
    x_mask: (B, 1, F)
    """
    B, C, f = x.size() # B, 160, F//2
    x = x.view(B, 2, C//2, f) # (B, 2, 80, F//2)
    x = x.permute(0, 2, 3, 1).contiguous() # (B, 80, F//2, 2)
    x = x.view(B, C//2, 2*f) # (B, 160, F)
    
    x_mask = x_mask.unsqueeze(3).repeat(1, 1, 1, 2).view(B, 1, 2*f) # (B, 1, F//2, 1) -> (B, 1, F//2, 2) -> (B, 1, F)
    x = x * x_mask # masking
    return x, x_mask

class Encoder(nn.Module):
    def __init__(self):
        super().__init__()
        self.embedding = nn.Embedding(symbol_length, 192) # (B, T) -> (B, T, 192)
        nn.init.normal_(self.embedding.weight, 0.0, 192**(-0.5)) # 가중치 정규분포 초기화 (N(0, 0.07xx))
        
        self.prenet = PreNet()
        self.transformer_encoder = TransformerEncoder()
        self.project_mean = nn.Conv1d(192, 80, kernel_size=1) # (B, 192, T) -> (B, 80, T)
        self.project_std = nn.Conv1d(192, 80, kernel_size=1) # (B, 192, T) -> (B, 80, T)
        
        self.duration_predictor = DurationPredictor()
        
    def forward(self, text, text_len):
        """
        =====inputs=====
        text: (B, Max_T)
        text_len: (B)
        =====outputs=====
        x_mean: (B, 80, T) | 평균, 논문 저자 구현의 train.py에서 out_channels를 80으로 설정한 것을 알 수 있음.
        x_std: (B, 80, T) | 표준편차
        x_dur: (B, 1, T)
        x_mask: (B, 1, T)
        """
        x = self.embedding(text) * math.sqrt(192) # (B, T) -> (B, T, 192) # math.sqrt(192) = 13.xx (수정)
        x = x.transpose(1, 2) # (B, T, 192) -> (B, 192, T)
        
        # Make the x_mask
        x_mask = torch.zeros_like(x[:, 0:1, :], dtype=torch.bool) # (B, 1, T)
        for idx, length in enumerate(text_len):
            x_mask[idx, :, :length] = True
        
        x = self.prenet(x, x_mask) # (B, 192, T)
        x = self.transformer_encoder(x, x_mask) # (B, 192, T)
        
        # project
        x_mean = self.project_mean(x) * x_mask # (B, 192, T) -> (B, 80, T)
        # x_std = self.project_std(x) * x_mask # (B, 192, T) -> (B, 80, T)
        ##### 아래는 mean_only를 적용한 것임. #####
        x_std = torch.zeros_like(x_mean) # x_log_std: (B, 80, T), all zero # log std = 0이므로 std = 1로 계산됨.

        # duration predictor
        x_dp = torch.detach(x) # stop_gradient
        x_dur = self.duration_predictor(x_dp, x_mask) # (B, 192, T) -> (B, 1, T)
        
        return x_mean, x_std, x_dur, x_mask

class LayerNorm(nn.Module):
    """
    여러 곳에서 정규화(Norm)를 위해 사용되는 모듈.
    
    nn.LayerNorm이 이미 pytorch 안에 구현되어 있으나, 항상 마지막 차원을 정규화한다.
    그래서 channel을 기준으로 정규화하는 LayerNorm을 따로 구현한다.
    """
    def __init__(self, channels):
        """
        channels: 입력 데이터의 channel 수 | LayerNorm은 channel 차원을 정규화한다.
        """
        super().__init__()
        self.channels = channels
        self.eps = 1e-4
        
        self.gamma = nn.Parameter(torch.ones(channels)) # 학습 가능한 파라미터
        self.beta = nn.Parameter(torch.zeros(channels)) # 학습 가능한 파라미터
        
    def forward(self, x):
        """
        =====inputs=====
        x: (B, channels, *) | 정규화할 입력 데이터
        =====outputs=====
        x: (B, channels, *) | channel 차원이 정규화된 데이터
        """
        mean = torch.mean(x, dim=1, keepdim=True) # channel 차원(index=1)의 평균 계산, 차원을 유지한다.
        variance = torch.mean((x-mean)**2, dim=1, keepdim=True) # 분산 계산
        
        x = (x - mean) * (variance + self.eps)**(-0.5) # (x - m) / sqrt(v)
        
        n = len(x.shape)
        shape = [1] * n
        shape[1] = -1 # shape = [1, -1, 1] or [1, -1, 1, 1]
        x = x * self.gamma.view(*shape) + self.beta.view(*shape) # y = x*gamma + beta
        
        return x

class PreNet(nn.Module):
    """
    Encoder의 1번째 모듈
    """
    def __init__(self):
        super().__init__()
        self.convs = nn.ModuleList()
        self.norms = nn.ModuleList()
        self.relu = nn.ReLU()
        self.dropout = nn.Dropout(0.5)
        for i in range(3):
            self.convs.append(nn.Conv1d(192, 192, kernel_size=5, padding=2)) # (B, 192, T) 유지
            self.norms.append(LayerNorm(192)) # (B, 192, T) 유지
        self.linear = nn.Conv1d(192, 192, kernel_size=1) # (B, 192, T) 유지 | linear 역할을 하는 conv
        
    def forward(self, x, x_mask):
        """
        =====inputs=====
        x: (B, 192, T) | Embedding된 입력 데이터
        x_mask: (B, 1, T) | 글자 길이에 따른 mask (글자가 있으면 True, 없으면 False로 구성)
        =====outputs=====
        x: (B, 192, T)
        """
        x0 = x
        for i in range(3):
            x = self.convs[i](x * x_mask)
            x = self.norms[i](x)
            x = self.relu(x)
            x = self.dropout(x)
        x = self.linear(x)
        x = x0 + x # residual connection
        return x
    
class MultiHeadAttention(nn.Module):
    """
    Encoder 중 2번째 모듈인 TransformerEncoder의 1번째 모듈
    """
    def __init__(self):
        super().__init__()
        self.n_heads = 2
        self.window_size = 4
        self.k_channels = 192 // self.n_heads # 96
        
        self.linear_q = nn.Conv1d(192, 192, kernel_size=1) # (B, 192, T) 유지
        self.linear_k = nn.Conv1d(192, 192, kernel_size=1) # (B, 192, T) 유지
        self.linear_v = nn.Conv1d(192, 192, kernel_size=1) # (B, 192, T) 유지
        nn.init.xavier_uniform_(self.linear_q.weight)
        nn.init.xavier_uniform_(self.linear_k.weight)
        nn.init.xavier_uniform_(self.linear_v.weight)
        
        relative_std = self.k_channels ** (-0.5) # 0.1xx
        self.relative_k = nn.Parameter(torch.randn(1, self.window_size * 2 + 1, self.k_channels) * relative_std) # (1, 9, 96)
        self.relative_v = nn.Parameter(torch.randn(1, self.window_size * 2 + 1, self.k_channels) * relative_std) # (1, 9, 96)
        
        self.attention_weights = None
        self.linear_out = nn.Conv1d(192, 192, kernel_size=1) # (B, 192, T) 유지
        self.dropout = nn.Dropout(0.1)
        
    def forward(self, query, context, attention_mask, self_attention=True):
        """
        =====inputs=====
        query: (B, 192, T_target) | Glow-TTS에서는 self-attention만 이용하므로 query와 context가 동일한 텐서 x이다.
        context: (B, 192, T_source) | query = context || 여기에서는 특히 T_source = T_target 이다.
        attention_mask: (B, 1, T, T) | x_mask.unsqueeze(2) * z_mask.unsqueeze(3)
        self_attention: True/False | self_attention일 때 relative position representations를 적용한다. 여기에서는 항상 True이다.
        # 실제로는 query와 context에 같은 텐서 x를 입력하면 된다.
        =====outputs=====
        output: (B, 192, T)
        """
        
        query = self.linear_q(query)
        key = self.linear_k(context)
        value = self.linear_v(context)
        
        B, _, T_tar = query.size()
        T_src = key.size(2)
        query = query.view(B, self.n_heads, self.k_channels, T_tar).transpose(2, 3)
        key = key.view(B, self.n_heads, self.k_channels, T_src).transpose(2, 3)
        value = value.view(B, self.n_heads, self.k_channels, T_src).transpose(2, 3)
            # (B, 192, T_src) -> (B, 2, 96, T_src) -> (B, 2, T_src, 96)
            
        scores = torch.matmul(query, key.transpose(2, 3)) / (self.k_channels ** 0.5)
            # (B, 2, T_tar, 96) * (B, 2, 96, T_src) -> (B, 2, T_tar, T_src)
        
        if self_attention: # True
            # Get relative embeddings (relative_keys) (1-1)
            padding = max(T_src - (self.window_size + 1), 0) # max(T-5, 0)
            start_pos = max((self.window_size + 1) - T_src, 0) # max(5-T, 0)
            end_pos = start_pos + 2 * T_src - 1 # (2*T-1) or (T+4)
            relative_keys = F.pad(self.relative_k, (0, 0, padding, padding))
                # (1, 9, 96) -> (1, pad+9+pad, 96) = (1, 2T-1, 96)
            """
            위 코드의 F.pad(input, pad) 에서 pad = (0, 0, padding, padding)은 다음을 의미한다.
            - 앞의 (0, 0): input의 -1차원을 앞으로 0, 뒤로 0만큼 패딩한다.
            - 앞의 (padding, padding): input의 -2차원을 앞으로 padding, 뒤로 padding만큼 패딩한다.
            즉, F.pad에서 pad는 역순으로 생각해주어야 한다.
            """
            relative_keys = relative_keys[:, start_pos:end_pos, :] # (1, 2T-1, 96)
            
            # Matmul with relative keys (2-1)
            relative_keys = relative_keys.unsqueeze(0).transpose(2, 3) # (1, 2T-1, 96) -> (1, 1, 2T-1, 96) -> (1, 1, 96, 2T-1)
            x = torch.matmul(query, relative_keys) # (B, 2, T_tar, 96) * (1, 1, 96, 2T_src-1) = (B, 2, T, 2T-1)
                # self attention에서는 T_tar = T_src이므로 이를 다르게 고려할 필요가 없다.
            
            # Relative position to absolute position (3-1)
            T = T_tar # Absolute position to relative position에서도 쓰임.
            x = F.pad(x, (0, 1)) # (B, 2, T, 2*T-1) -> (B, 2, T, 2*T)
            x = x.view(B, self.n_heads, T * 2 * T) # (B, 2, T, 2*T) -> (B, 2. 2T^2)
            x = F.pad(x, (0, T-1)) # (B, 2, 2T^2 + T - 1)
            x = x.view(B, self.n_heads, T+1, 2*T-1) # (B, 2, T+1, 2T-1)
            relative_logits = x[:, :, :T, T-1:] # (B, 2, T, T)
            
            # Compute scores
            scores_local = relative_logits / (self.k_channels ** 0.5)
            scores = scores + scores_local # (B, 2, T, T)
            """
            위 식은 Self-Attention with Relative Position Representations 논문의 5번 식을 구현한 것이다.
            Relative- 논문: https://arxiv.org/pdf/1803.02155.pdf
            """

        scores = scores.masked_fill(attention_mask == 0, -1e-4) # attention_mask가 0인 곳을 -1e-4로 채운다.
        
        attention_weights = F.softmax(scores, dim=-1) # (B, 2, T_tar, T_src) # Relative- 논문에서의 alpha에 해당한다.
        attention_weights = self.dropout(attention_weights) # dropout하는 이유가 무엇일까?
        output = torch.matmul(attention_weights, value) # (B, 2, T_tar, T_src) * (B, 2, T_src, 96) -> (B, 2, T_tar, 96)
        
        if self_attention: # True
            # Absolute position to relative position (3-2)
            x = F.pad(attention_weights, (0, T-1)) # (B, 2, T, T) -> (B, 2, T, 2T-1)
            x = x.view((B, self.n_heads, T * (2*T-1))) # (B, 2, 2T^2-T)
            x = F.pad(x, (T, 0)) # (B, 2, 2T^2) # 앞에 패딩
            x = x.view((B, self.n_heads, T, 2*T)) # (B, 2, T, 2T)
            relative_weights = x[:, :, :, 1:] # (B, 2, T, 2T-1)
            
            # Get relative embeddings (relative_value) (1-2) # (1-1)과 거의 동일
            padding = max(T_src - (self.window_size + 1), 0) # max(T-5, 0)
            start_pos = max((self.window_size + 1) - T_src, 0) # max(5-T, 0)
            end_pos = start_pos + 2 * T_src - 1 # (2*T-1) or (T+4)
            relative_values = F.pad(self.relative_v, (0, 0, padding, padding))
                # (1, 9, 96) -> (1, pad+9+pad, 96) = (1, 2T-1, 96)
            relative_values = relative_values[:, start_pos:end_pos, :] # (1, 2T-1, 96)

            # Matmul with relative values (2-2)
            relative_values = relative_values.unsqueeze(0) # (1, 1, 2T-1, 96)

            output = output + torch.matmul(relative_weights, relative_values)
                # (B, 2, T, 2T-1) * (1, 1, 2T-1, 96) = (B, 2, T, 96)
            """
            위 식은 Self-Attention with Relative Position Representations 논문의 3번 식을 구현한 것이다. (분배법칙 이용)
            Relative- 논문: https://arxiv.org/pdf/1803.02155.pdf
            """
        
        output = output.transpose(2, 3).contiguous().view(B, 192, T_tar)
            # (B, 2, 96, T) -> 메모리에 연속 배치 -> (B, 192, T)
            
        self.attention_weights = attention_weights # (B, 2, T, T)
        output = self.linear_out(output)
        return output # (B, 192, T)
    
class FFN(nn.Module):
    """
    Encoder 중 2번째 모듈인 TransformerEncoder의 2번째 모듈
    """
    def __init__(self):
        super().__init__()
        self.conv1 = nn.Conv1d(192, 768, kernel_size=3, padding=1) # (B, 192, T) -> (B, 768, T)
        self.relu = nn.ReLU()
        self.conv2 = nn.Conv1d(768, 192, kernel_size=3, padding=1) # (B, 768, T) -> (B, 192, T)
        self.dropout = nn.Dropout(0.1)
    
    def forward(self, x, x_mask):
        """
        =====inputs=====
        x: (B, 192, T)
        x_mask: (B, 1, T)
        =====outputs=====
        output: (B, 192, T)
        """
        x = self.conv1(x)
        x = self.relu(x)
        x = self.dropout(x)
        x = self.conv2(x)
        output = x * x_mask
        return output
    
class TransformerEncoder(nn.Module):
    """
    Encoder의 2번째 모듈
    """
    def __init__(self):
        super().__init__()
        self.attentions = nn.ModuleList()
        self.norms1 = nn.ModuleList()
        self.ffns = nn.ModuleList()
        self.norms2 = nn.ModuleList()
        for i in range(6):
            self.attentions.append(MultiHeadAttention())
            self.norms1.append(LayerNorm(192))
            self.ffns.append(FFN())
            self.norms2.append(LayerNorm(192))
        self.dropout = nn.Dropout(0.1)
        
    def forward(self, x, x_mask):
        """
        =====inputs=====
        x: (B, 192, T)
        x_mask: (B, 1, T)
        =====outputs=====
        output: (B, 192, T)
        """
        attention_mask = x_mask.unsqueeze(2) * x_mask.unsqueeze(3)
            # (B, 1, 1, T) * (B, 1, T, 1) = (B, 1, T, T), only consist 0 or 1
        for i in range(6):
            x = x * x_mask
            y = self.attentions[i](x, x, attention_mask)
            y = self.dropout(y)
            x = x + y # residual connection
            x = self.norms1[i](x) # (B, 192, T) 유지
            
            y = self.ffns[i](x, x_mask)
            y = self.dropout(y)
            x = x + y # residual connection
            x = self.norms2[i](x)
        output = x * x_mask
        return output # (B, 192, T)
    
class DurationPredictor(nn.Module):
    """
    Encoder의 3번째 모듈
    """
    def __init__(self):
        super().__init__()
        self.conv1 = nn.Conv1d(192, 256, kernel_size=3, padding=1) # (B, 192, T) -> (B, 256, T)
        self.norm1 = LayerNorm(256)
        self.conv2 = nn.Conv1d(256, 256, kernel_size=3, padding=1) # (B, 256, T) -> (B, 256, T)
        self.norm2 = LayerNorm(256)
        self.linear = nn.Conv1d(256, 1, kernel_size=1) # (B, 256, T) -> (B, 1, T)
        
        self.relu = nn.ReLU()
        self.dropout = nn.Dropout(0.1)
        
    def forward(self, x, x_mask):
        """
        =====inputs=====
        x: (B, 192, T)
        x_mask: (B, 1, T)
        =====outputs=====
        output: (B, 1, T)
        """
        x = self.conv1(x * x_mask) # (B, 192, T) -> (B, 256, T)
        x = self.relu(x)
        x = self.norm1(x)
        x = self.dropout(x)
        
        x = self.conv2(x * x_mask) # (B, 256, T) -> (B, 256, T)
        x = self.relu(x)
        x = self.norm2(x)
        x = self.dropout(x)
        
        x = self.linear(x * x_mask) # (B, 256, T) -> (B, 1, T)
        output = x * x_mask
        return output