Spaces:
Runtime error
Runtime error
File size: 11,995 Bytes
41989ff |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 |
import torch
import torch.nn as nn
import torch.nn.functional as F
######################################### encoder ##############################################
class Layernorm(nn.Module):
def __init__(self, channels):
super().__init__()
self.gamma = nn.Parameter(torch.ones(1, channels))
self.beta = nn.Parameter(torch.zeros(1, channels))
def forward(self, x):
m = torch.mean(x, dim = 1, keepdim = True)
v = torch.mean((x-m)**2, dim = 1, keepdim = True)
x = (x - m) * torch.rsqrt(v + 1e-4) # normarlization
n = len(x.shape)
shape = [1, -1] + [1]*(n-2)
x = x*self.gamma.reshape(*shape) + self.beta.reshape(*shape)
return x
class Prenet(nn.Module):
def __init__(self, in_c, hi_c, out_c, k_s = 5, layers =3, p = 0.05):
super().__init__()
self.crn = nn.ModuleList()
self.crn.extend([nn.Conv1d(in_c, hi_c, k_s, padding = k_s//2), Layernorm(hi_c), nn.ReLU(), nn.Dropout(p=p)])
self.crn.extend([nn.Conv1d(hi_c, hi_c, k_s, padding = k_s//2), Layernorm(hi_c), nn.ReLU(), nn.Dropout(p=p)])
self.crn.extend([nn.Conv1d(hi_c, hi_c, k_s, padding = k_s//2), Layernorm(hi_c), nn.ReLU(), nn.Dropout(p=p)])
self.proj = nn.Conv1d(hi_c, out_c, 1)
self.proj.weight.data.zero_()
self.proj.bias.data.zero_()
def forward(self, start, x_mask=1):
x = start
for layer in self.crn:
x = layer(x) # [b. c. t]
x = x * x_mask
x = self.proj(x) + start # [b. c. t]
end = x * x_mask
return end # [b. c. t]
class MultiheadAttention(nn.Module):
def __init__(self, c, out_c, heads, window_size=4, heads_share=True, p=0.1, block_length=None,):
super().__init__()
self.k = c // heads
self.window_size = window_size
self.proj_q = nn.Conv1d(c,c,1)
self.proj_k = nn.Conv1d(c,c,1)
self.proj_v = nn.Conv1d(c,c,1)
nn.init.xavier_uniform_(self.proj_q.weight)
nn.init.xavier_uniform_(self.proj_k.weight)
nn.init.xavier_uniform_(self.proj_v.weight)
n_heads_rel = 1 if heads_share else heads
self.d_k = (self.k)**(-0.5)
self.emb_rel_k = nn.Parameter(torch.randn(n_heads_rel, window_size*2 +1, self.k) * self.d_k)
self.emb_rel_v = nn.Parameter(torch.randn(n_heads_rel, window_size*2 +1, self.k) * self.d_k)
self.conv_o = nn.Conv1d(c, out_c, 1)
self.drop = nn.Dropout(p=p)
def forward(self, x, attn_mask=None):
query, key, value = self.proj_q(x), self.proj_k(x), self.proj_v(x)
b, c, t = query.shape
h, k = c // self.k, self.k
query = query.reshape(b,h,k,t)
key = key.reshape(b,h,k,t)
value = value.reshape(b,h,k,t)
matrix = self.get_relative_matrix(self.emb_rel_k, t)
rel_logit = torch.matmul(matrix.unsqueeze(0), query) # [1,1,2t-1,k] * [b,h,k,t] = [b,h,2t-1,t]
abs_logit = self.rel_to_abs(rel_logit.transpose(2,3))
local_score = abs_logit * self.d_k
score = torch.matmul(query.transpose(2,3), key) * self.d_k + local_score
if attn_mask is not None:
score = score.masked_fill(attn_mask == 0, -1e4)
align = F.softmax(score, dim = -1)
atten = self.drop(align)
self.atten = atten
matrix = self.get_relative_matrix(self.emb_rel_v, t).transpose(1,2) # [1,k,2t-1]
weight = self.abs_to_rel(atten).transpose(2,3) # [b,h,2t-1,t]
output = torch.matmul(value, atten) + torch.matmul(matrix.unsqueeze(0), weight) # [b,h,k,t]
x = self.conv_o(output.contiguous().reshape(b,c,t))
return x
def get_relative_matrix(self, emb_rel_k, t):
s = self.window_size
pad_size = max(t - s - 1, 0)
start = max(s+1-t, 0)
emb_rel_k = F.pad(emb_rel_k, (0,0, pad_size, pad_size))
return emb_rel_k[:,start:start+2*t+1]
def rel_to_abs(self, x):
b,h,t,_= x.shape
x = F.pad(x, (0,1)).reshape(b,h,2*t*t)
x = F.pad(x, (0,t-1)).reshape(b,h,t+1, 2*t-1)[:,:,:t,t-1:]
return x
def abs_to_rel(self, x):
b,h,t,t = x.shape
x = F.pad(x, (0, t-1)).reshape(b,h,2*t*t-t)
x = F.pad(x, (t,0)).reshape(b,h,t,2*t)[:,:,:,1:]
return x
class FFN(nn.Module):
def __init__(self, h_c, f_c, k_s, p = 0.1):
super().__init__()
self.conv1 = nn.Conv1d(h_c, f_c, k_s, padding=k_s//2)
self.conv2 = nn.Conv1d(f_c, h_c, k_s, padding=k_s//2)
self.drop = nn.Dropout(p=p)
def forward(self, x, x_mask = None):
x = self.conv2(self.drop(F.relu(self.conv1(x*x_mask)))*x_mask)
return x * x_mask
class DurationPredictor(nn.Module):
def __init__(self, in_c, f_c, k_s, p=0.1):
super().__init__()
self.block1 = nn.Sequential(nn.Conv1d(in_c, f_c, k_s, padding=k_s//2),
nn.ReLU(),
Layernorm(f_c),
nn.Dropout(p=p))
self.block2 = nn.Sequential(nn.Conv1d(f_c, f_c, k_s, padding=k_s//2),
nn.ReLU(),
Layernorm(f_c),
nn.Dropout(p=p))
self.proj = nn.Conv1d(f_c, 1, 1)
def forward(self, x, x_mask):
x = self.block1(x * x_mask)
x = self.block2(x * x_mask)
x = self.proj(x * x_mask)
return x * x_mask
######################################### decoder ##############################################
# static file system(reasoning the type of tensor), optimizing computation graph, complie before functioning >> to accelate the speed
@torch.jit.script
def fuse_tan_sig_add(x:torch.Tensor, mid:int) -> torch.Tensor:
a, b = x[:, :mid, :], x[:, mid:, :]
return torch.sigmoid(a) * torch.tanh(b)
class WN(nn.Module): # non-casual wavenet without dilation
def __init__(self, hi_c, k_s, d_l = 1, layers = 3, p=0.05):
super().__init__()
self.hi_c = hi_c
self.resblocks=nn.ModuleList()
self.skipblocks=nn.ModuleList()
self.drop = nn.Dropout(p=p)
for _ in range(layers):
res_layer = nn.Conv1d(hi_c, 2*hi_c, k_s, dilation=d_l, padding=k_s//2)
res_layer = nn.utils.weight_norm(res_layer, name = 'weight')
self.resblocks.append(res_layer)
if _ ==2:
skip_layer = nn.Conv1d(hi_c, hi_c, 1) # last layer
else:
skip_layer = nn.Conv1d(hi_c, 2*hi_c, 1)
skip_layer = nn.utils.weight_norm(skip_layer, name = 'weight')
self.skipblocks.append(skip_layer)
def forward(self, x, x_mask = None):
mid = self.hi_c
end = torch.zeros_like(x, dtype=x.dtype)
for i in range(len(self.resblocks)):
x = self.drop(self.resblocks[i](x)) # [b, 2c, t]
x = fuse_tan_sig_add(x, mid) # [b, c, t]
y = self.skipblocks[i](x)
if i == 2:
end = end + y # last layer
else:
x = (x + y[:, :mid, :]) * x_mask
end = end + y[:, mid:, :]
return end * x_mask
def skip(self):
for layer1, layer2 in zip(self.resblocks, self.skipblocks):
nn.utils.remove_weight_norm(layer1)
nn.utils.remove_weight_norm(layer2)
class Couplinglayer(nn.Module):
def __init__(self, in_c, hi_c, k_s, d_l = 1):
super().__init__()
s_proj = nn.Conv1d(in_c//2, hi_c, 1)
self.start = nn.utils.weight_norm(s_proj, name = 'weight')
# Initializing last layer to 0 makes the affine coupling layers
# do nothing at first. It helps to stabilze training. from glow paper
self.end = nn.Conv1d(hi_c, in_c, 1)
self.end.weight.data.zero_()
self.end.bias.data.zero_()
self.wn = WN(hi_c, k_s, d_l)
# y = x * logs + t
def forward(self, x, x_mask=None, reverse = False):
if x_mask is None:
x_mask = 1
mid = x.shape[1]//2 # divide channels by 2
x_0, x_1 = x[:, :mid, :], x[:, mid:, :]
z_1 = self.end(self.wn(self.start(x_1) * x_mask, x_mask))
logs, t = z_1[:,mid:,:], z_1[:, :mid, :]
if reverse:
x_0 = torch.exp(-logs)*(x_0 - t) * x_mask
logdet = None
else :
x_0 = torch.exp(logs + 1e-4) * x_0 + t
logdet = torch.sum(logs * x_mask, [1,2]) # sum(log(s))
z = torch.cat([x_0, x_1], dim = 1)
return z, logdet
def skip(self):
self.wn.skip()
class InvConvNear(nn.Module):
def __init__(self, splits = 4):
super().__init__()
self.splits = splits
w_init = torch.linalg.qr(torch.randn((splits, splits)).normal_())[0] # othonormal vector matrix
if torch.det(w_init) < 0:
w_init[0,:] = -w_init[0,:]
self.weight = nn.Parameter(w_init)
def forward(self, x, x_mask=None, reverse = False):
b, c, t = x.shape
if x_mask is None:
x_mask = 1
x_len = torch.ones(b) * t # [b]
else:
x_len = torch.sum(x_mask, [1,2])
s = self.splits
x = x.reshape(b, 2, c//s, s//2, t) # split channels into 2 groups
x = x.permute(0,1,3,2,4).contiguous().reshape(b, s, c//s, t)
if reverse:
if hasattr(self, "weight_inv"):
weight = self.weight_inv
weight = torch.inverse(self.weight).to(dtype=self.weight.dtype)
logdet = None
else:
weight = self.weight
logdet = torch.logdet(weight) * (c//s) * x_len # h*w*log(det(W)) since there's no necesserity for decomposition
weight = weight.unsqueeze(-1).unsqueeze(-1)
z = F.conv2d(x, weight) # z = matmul(weight, x_i,j) for i,j in h = c//s, w = t
z = z.reshape(b, 2, s//2, c//s, t).permute(0,1,3,2,4).contiguous().reshape(b, c, t) * x_mask
return z, logdet
def skip(self):
self.weigth_inv = torch.inverse(self.weight.float()).to(dtype=self.weight.dtype)
class ActNorm(nn.Module):
def __init__(self, hi_c, ddi = False): # data dependent initialization
super().__init__()
self.logs = nn.Parameter(torch.zeros(1, hi_c, 1))
self.bias = nn.Parameter(torch.zeros(1, hi_c, 1))
self.ddi = ddi
def forward(self, x, x_mask = None, reverse = False):
b, _, t = x.shape
if x_mask is None:
x_mask = torch.ones(b,1,t).to(device= x.device, dtype = x.dtype)
x_len = torch.sum(x_mask, [1, 2])
if self.ddi:
self.initialize(x, x_mask)
self.ddi = False
# y = exp(logs) * x + bias > normalization in channel dim
if reverse:
z = (x - self.bias) * torch.exp(-self.logs) * x_mask
logdet = None
else:
z = (torch.exp(self.logs) * x + self.bias) * x_mask
logdet = torch.sum(self.logs, [1,2])* x_len
return z, logdet
def initialize(self, x, x_mask):
with torch.no_grad():
n = torch.sum(x_mask, [0,2])
m = torch.sum(x * x_mask, [0,2])/n
m_s = torch.sum(x * x * x_mask, [0,2])/n
v = m_s - m**2
logs = 0.5 * torch.log(torch.clamp_min(v, 1e-6))
init_bias = (-m/torch.exp(-logs)).reshape(*self.bias.shape).to(dtype = self.bias.dtype) # -m/s
init_logs = (-logs).reshape(*self.logs.shape).to(dtype = self.logs.dtype) # -logs
self.bias.data.copy_(init_bias)
self.logs.data.copy_(init_logs)
def set_ddi(self):
self.ddi = True
def skip(self):
pass |