File size: 4,682 Bytes
41989ff
 
8fde97d
41989ff
 
 
 
 
dcef047
 
 
 
41989ff
8fde97d
 
dcef047
371ba49
dcef047
 
 
764c666
8fde97d
 
fa050b7
 
4936e8e
 
8fde97d
 
764c666
1258aa9
fa050b7
1258aa9
4936e8e
 
8fde97d
 
 
87218c5
8fde97d
 
 
 
 
 
 
 
 
 
 
 
41989ff
 
 
 
 
764c666
 
41989ff
 
 
8fde97d
764c666
 
41989ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
764c666
41989ff
 
 
 
 
 
 
 
 
 
b318680
41989ff
 
764c666
b318680
 
 
41989ff
b318680
 
 
 
 
 
87218c5
486e21a
b318680
41989ff
 
87218c5
 
 
fa050b7
41989ff
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
import streamlit as st
import soundfile as sf
import os, re
import torch
from datautils import *
from model import Generator as Glow_model
from Hmodel import Generator as GAN_model

st.set_page_config(
    page_title = "소신 Team Demo",
    page_icon = "🔉",
)

class TTS:
    def __init__(self, model_variant):
        global device
        device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        torch.cuda.manual_seed(1234) if torch.cuda.is_available() else None
        self.flowgenerator = Glow_model(n_vocab = 70, h_c= 192, f_c = 768, f_c_dp = 256, out_c = 80, k_s = 3, k_s_dec = 5, heads=2, layers_enc = 6).to(device)
        self.voicegenerator = GAN_model().to(device)
        if model_variant == '감기걸린 은식':
            name = '1038_eunsik_01'
            last_chpt1 = './log/1038_eunsik_01/Glow_TTS_00289602.pt'
        elif model_variant == 'KSS':
            last_chpt1 = './log/KSS/Glow_TTS_00280641.pt'
        check_point = torch.load(last_chpt1, map_location = device)
        self.flowgenerator.load_state_dict(check_point['generator'])
        self.flowgenerator.decoder.skip()
        self.flowgenerator.eval()
        if model_variant == '감기걸린 은식':
            last_chpt2 = './log/1038_eunsik_01/HiFI_GAN_00257000.pt'
        elif model_variant == 'KSS':
            last_chpt2 = './log/KSS/HiFi_GAN_00135000.pt'
        check_point = torch.load(last_chpt2, map_location = device)
        self.voicegenerator.load_state_dict(check_point['gen_model'])
        self.voicegenerator.eval()
        self.voicegenerator.remove_weight_norm()
    
    def inference(self, input_text, noise_scale = 0.667, length_scale = 1.0):
        filters = '([.,!?])'
        sentence = re.sub(re.compile(filters), '', input_text)
        x = text_to_sequence(sentence)
        x = torch.autograd.Variable(torch.tensor(x).unsqueeze(0)).to(device).long()
        x_length = torch.tensor(x.shape[1]).unsqueeze(0).to(device)
        
        with torch.no_grad():
            (y_gen_tst, *_), *_, (attn_gen, *_) = self.flowgenerator(x, x_length, gen = True, noise_scale = noise_scale, length_scale = length_scale)
            y = self.voicegenerator(y_gen_tst)
            audio = y.squeeze() * 32768.0
            voice = audio.cpu().numpy().astype('int16')
        return voice

def init_session_state():
    # Model
    if "init_model" not in st.session_state:
        st.session_state.init_model = True
        st.session_state.model_variant = "감기걸린 은식"
        st.session_state.TTS = TTS("감기걸린 은식")

def update_model():
    if st.session_state.model_variant == "KSS":
        st.session_state.TTS = TTS("KSS")
    elif st.session_state.model_variant == "감기걸린 은식":
        st.session_state.TTS = TTS("감기걸린 은식")

def update_session_state(state_id, state_value):
    st.session_state[f"{state_id}"] = state_value
    
def centered_text(input_text, mode = "h1",):
    st.markdown(
        f"<{mode} style='text-align: center;'>{input_text}</{mode}>", unsafe_allow_html = True)

init_session_state()

centered_text("🔉 소신 Team Demo")
centered_text("mel generator : Glow-TTS, vocoder : HiFi-GAN", "h5")
st.write(" ")

mode = "p"
st.markdown(
    f"<{mode} style='text-align: left;'><small>This is a demo trained by our vocie. The voice \"KSS\" is traind by <a href= 'https://www.kaggle.com/datasets/bryanpark/korean-single-speaker-speech-dataset'>KSS Dataset</a>. The voice \"감기걸린 은식\" is trained from pre-trained \"KSS\". We got this deomoformat from Nix-TTS Interactive Demo</small></{mode}>",
    unsafe_allow_html = True
)

st.write(" ")
st.write(" ")
col1, col2 = st.columns(2)

with col1:
    input_text = st.text_input(
        "한글로만 입력해주세요",
        value = "밥은 먹고 다녀",
    )
with col2:
    model_variant = st.selectbox("목소리 선택해주세요", options = ["KSS", "감기걸린 은식"], index = 1)
    
button_change = st.button("Change Vocie") 
if button_change == True:
    if model_variant != st.session_state.model_variant:
    # Update variant choice
    update_session_state("model_variant", model_variant)
    # Re-load model
    update_model()
    st.snow()
    
noise_scale = st.slider('noise를 추가합니다.', 0., 2., value = 0.33, step = 0.01)
length_scale = st.slider('속도를 조절합니다.', 0., 2., value = 1., step = 0.01)

button_gen = st.button("Generate Voice")
if button_gen == True:
    voice = st.session_state.TTS.inference(input_text, noise_scale, length_scale)
    st.audio(voice,sample_rate = 22050)
    st.caption("Generated Voice by" + st.session_state.model_variant)
    st.balloons()