marcelomoreno26 commited on
Commit
6cfa228
1 Parent(s): 9d54e27

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +12 -2
app.py CHANGED
@@ -7,12 +7,16 @@ import pandas as pd
7
 
8
  def main():
9
  st.title("WhatsApp Analysis Tool")
 
 
 
 
10
 
11
  # File uploader
12
- uploaded_file = st.file_uploader("Choose a file (.txt or .zip)", type=['txt', 'zip'])
13
  if uploaded_file is not None:
14
  file_type = detect_file_type(uploaded_file.name)
15
- if file_type in ["txt", "zip"]:
16
  # Process the file
17
  data = preprocess_whatsapp_messages(uploaded_file, file_type)
18
  if data.empty:
@@ -26,6 +30,12 @@ def main():
26
  text_for_analysis = get_dated_input(data, selected_date)
27
  with st.expander("Show/Hide Original Conversation"):
28
  st.markdown(f"```\n{text_for_analysis}\n```", unsafe_allow_html=True)
 
 
 
 
 
 
29
 
30
  # Load models
31
  tokenizer_sentiment, model_sentiment = load_sentiment_analyzer()
 
7
 
8
  def main():
9
  st.title("WhatsApp Analysis Tool")
10
+ st.markdown("This app summarizes Whatsapp chats and provides named entity recognition as well as sentiment analysis for the conversation")
11
+ st.markdown("**NOTE**: *This app can only receive chats downloaded from IOS as the downloaded chat format is different than from Android.*")
12
+ st.markdown("Download your whatsapp chat by going to Settings > Chats > Export Chat and there select the chat you want to summarize (download 'Without Media').")
13
+
14
 
15
  # File uploader
16
+ uploaded_file = st.file_uploader("Choose a file (.zip)", type=['zip'])
17
  if uploaded_file is not None:
18
  file_type = detect_file_type(uploaded_file.name)
19
+ if file_type == "zip":
20
  # Process the file
21
  data = preprocess_whatsapp_messages(uploaded_file, file_type)
22
  if data.empty:
 
30
  text_for_analysis = get_dated_input(data, selected_date)
31
  with st.expander("Show/Hide Original Conversation"):
32
  st.markdown(f"```\n{text_for_analysis}\n```", unsafe_allow_html=True)
33
+ process = st.button('Process')
34
+ if process:
35
+ # Load models
36
+ tokenizer_sentiment, model_sentiment = load_sentiment_analyzer()
37
+ tokenizer_summary, model_summary = load_summarizer()
38
+ pipe_ner = load_NER()
39
 
40
  # Load models
41
  tokenizer_sentiment, model_sentiment = load_sentiment_analyzer()