marcelomoreno26's picture
Update preprocessor.py
071db21 verified
raw
history blame
3.99 kB
import pandas as pd
import zipfile
import re
from io import BytesIO
def detect_file_type(file_path):
type = file_path[-3:]
if type in ["txt","zip"]:
return type
else:
return "unknown"
def preprocess_whatsapp_messages(file_path, file_type):
"""
Preprocesses the Whatsapp messages zip file into a Pandas Dataframe, all messages in one day go
to a row and a timestamp is added.
Args:
file_path (str): Location of the file (zip or txt) of the conversation.
Returns:
str: Dataframe
"""
# Load the zip file and extract text data
print(file_type)
if file_type == "zip":
with zipfile.ZipFile(file_path, 'r') as z:
file_name = z.namelist()[0]
with z.open(file_name) as file:
text_data = file.read().decode('utf-8')
else:
text_data = BytesIO(file_path.getvalue()).read().decode('utf-8')
# Split the text data into lines
lines = text_data.strip().split('\n')
# Create a DataFrame
df = pd.DataFrame(lines, columns=['message'])
# Process each line to separate timestamp and text
df[['timestamp', 'text']] = df['message'].str.split(']', n=1, expand=True)
df['timestamp'] = df['timestamp'].str.strip('[')
# Handle cases where the split might not work (e.g., missing ']' in a line)
df.dropna(subset=['timestamp', 'text'], inplace=True)
# Convert timestamp to datetime and remove the time, keeping only the date
df['timestamp'] = pd.to_datetime(df['timestamp'], format='%d/%m/%y, %H:%M:%S', errors='coerce').dt.date
# Drop rows where the timestamp conversion failed (which results in NaT)
df.dropna(subset=['timestamp'], inplace=True)
# Remove initial WhatsApp system messages in English and Spanish
filter_text_en = "Your messages and calls are end-to-end encrypted"
filter_text_es = "Los mensajes y las llamadas están cifrados de extremo a extremo"
df = df[~df['text'].str.contains(filter_text_en, na=False)]
df = df[~df['text'].str.contains(filter_text_es, na=False)]
# Additional preprocessing steps:
# Remove URLs and convert text to lowercase
df['text'] = df['text'].apply(lambda x: re.sub(r'https?:\/\/\S+', '', x)) # Remove URLs
df['text'] = df['text'].apply(lambda x: x.lower()) # Convert text to lowercase
# Remove emojis, images, stickers, documents while preserving colons after sender names
df['text'] = df['text'].apply(lambda x: re.sub(r'(?<!\w)(:\s|\s:\s|\s:)', '', x)) # Remove colons that are not part of sender's name
df['text'] = df['text'].apply(lambda x: re.sub(r'\[image omitted\]', '', x)) # Remove images
df['text'] = df['text'].apply(lambda x: re.sub(r'\[sticker omitted\]', '', x)) # Remove stickers
df['text'] = df['text'].apply(lambda x: re.sub(r'\[document omitted\]', '', x)) # Remove documents
df['text'] = df['text'].apply(lambda x: re.sub(r'<se editó este mensaje.>', '', x)) # Remove editing function (new Whatsapp addition) in Spanish
df['text'] = df['text'].apply(lambda x: re.sub(r'<this message was edited.>', '', x)) # Remove editing function (new Whatsapp addition) in English I AM GUESSING IDk
# Group by date and concatenate all messages from the same date
df = df.groupby('timestamp')['text'].apply(lambda x: '\n'.join(x)).reset_index()
df.columns = ['date', 'text']
df['date'] = pd.to_datetime(df['date'])
df['text'] = df['text'].astype(str)
return df.sort_values(by="date")
def get_dated_input(data, selected_date):
'''
The Pandas dataframe is processed and the text is extracted.
:param data:
:param selected_date:
:return:
'''
selected_date = pd.to_datetime(selected_date)
data_for_model = data[data['date'].dt.date == selected_date.date()]
data_for_model.loc[:, 'text'] = data_for_model['text']
first_row_text = data_for_model['text'].iloc[0]
return first_row_text