Spaces:
Runtime error
Runtime error
from diffusers import StableDiffusionPipeline | |
import gradio as gr | |
import torch | |
import os | |
HF_TOKEN = os.getenv('HF_TOKEN') | |
hf_writer = gr.HuggingFaceDatasetSaver(HF_TOKEN, "crowdsourced-build-a-movie-poster-demo") | |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
generator = torch.Generator(device=device) | |
seed = 1016 | |
generator = generator.manual_seed(seed) | |
latent_tensor = torch.randn(size=(1, 4, 64, 64), | |
generator = generator, | |
device=device) | |
pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", use_auth_token=HF_TOKEN) | |
pipe = pipe.to(device) | |
def generate(celebrity, movie): | |
prompt = f"A movie poster of {celebrity} in {movie}" | |
image = pipe(prompt, latents=latent_tensor, num_inference_steps=50, guidance_scale=7).images[0] | |
return image | |
iface = gr.Interface( | |
fn=generate, | |
inputs=[gr.Textbox(label='Celebrity Name'), | |
gr.Dropdown(['Terminator', | |
'Captain America', | |
'Karate Kid', | |
'Titanic', | |
'The Crown'], label="Movie")], | |
outputs=gr.Image(type='pil'), | |
allow_flagging="manual", | |
flagging_options=["Celebrity Issues", "No Poster generated", "Good Poster", "Bad Poster"], | |
flagging_callback=hf_writer | |
) | |
iface.launch(debug=True) |