Spaces:
Runtime error
Runtime error
# Inspiration from https://huggingface.co./spaces/vumichien/whisper-speaker-diarization | |
import whisper | |
import datetime | |
import subprocess | |
import gradio as gr | |
from pathlib import Path | |
import pandas as pd | |
import re | |
import time | |
import os | |
import numpy as np | |
from sklearn.cluster import AgglomerativeClustering | |
from pytube import YouTube | |
import torch | |
import pyannote.audio | |
from pyannote.audio.pipelines.speaker_verification import PretrainedSpeakerEmbedding | |
from pyannote.audio import Audio | |
from pyannote.core import Segment | |
from gpuinfo import GPUInfo | |
import wave | |
import contextlib | |
from transformers import pipeline | |
import psutil | |
from zipfile import ZipFile | |
from io import StringIO | |
import csv | |
# ---- Model Loading ---- | |
whisper_models = ["base", "small", "medium", "large"] | |
source_languages = { | |
"en": "English", | |
"de": "German", | |
"es": "Spanish", | |
"fr": "French", | |
} | |
source_language_list = [key[0] for key in source_languages.items()] | |
MODEL_NAME = "openai/whisper-small" | |
lang = "en" | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
pipe = pipeline( | |
task="automatic-speech-recognition", | |
model=MODEL_NAME, | |
chunk_length_s=30, | |
device=device, | |
) | |
pipe.model.config.forced_decoder_ids = pipe.tokenizer.get_decoder_prompt_ids(language=lang, task="transcribe") | |
embedding_model = PretrainedSpeakerEmbedding( | |
"speechbrain/spkrec-ecapa-voxceleb", | |
device=torch.device("cuda" if torch.cuda.is_available() else "cpu")) | |
# ---- S2T & Speaker diarization ---- | |
def transcribe(microphone, file_upload): | |
warn_output = "" | |
if (microphone is not None) and (file_upload is not None): | |
warn_output = ( | |
"WARNING: You've uploaded an audio file and used the microphone. " | |
"The recorded file from the microphone will be used and the uploaded audio will be discarded.\n" | |
) | |
elif (microphone is None) and (file_upload is None): | |
return "ERROR: You have to either use the microphone or upload an audio file" | |
file = microphone if microphone is not None else file_upload | |
text = pipe(file)["text"] | |
return warn_output + text | |
def convert_time(secs): | |
return datetime.timedelta(seconds=round(secs)) | |
def convert_to_wav(filepath): | |
_,file_ending = os.path.splitext(f'{filepath}') | |
audio_file = filepath.replace(file_ending, ".wav") | |
print("starting conversion to wav") | |
os.system(f'ffmpeg -i "{filepath}" -ar 16000 -ac 1 -c:a pcm_s16le "{audio_file}"') | |
return audio_file | |
def speech_to_text(microphone, file_upload, selected_source_lang, whisper_model, num_speakers): | |
""" | |
# Transcribe audio file and separate into segment, assign speakers to segments | |
1. Using Open AI's Whisper model to seperate audio into segments and generate transcripts. | |
2. Generating speaker embeddings for each segments. | |
3. Applying agglomerative clustering on the embeddings to identify the speaker for each segment. | |
Speech Recognition is based on models from OpenAI Whisper https://github.com/openai/whisper | |
Speaker diarization model and pipeline from by https://github.com/pyannote/pyannote-audio | |
""" | |
model = whisper.load_model(whisper_model) | |
time_start = time.time() | |
try: | |
# Read and convert audio file | |
warn_output = "" | |
if (microphone is not None) and (file_upload is not None): | |
warn_output = ( | |
"WARNING: You've uploaded an audio file and used the microphone. " | |
"The recorded file from the microphone will be used and the uploaded audio will be discarded.\n" | |
) | |
elif (microphone is None) and (file_upload is None): | |
return "ERROR: You have to either use the microphone or upload an audio file" | |
file = microphone if microphone is not None else file_upload | |
if microphone is None and file_upload is not None: | |
file = convert_to_wav(file) | |
# Get duration | |
with contextlib.closing(wave.open(file,'r')) as f: | |
frames = f.getnframes() | |
rate = f.getframerate() | |
duration = frames / float(rate) | |
print(f"conversion to wav ready, duration of audio file: {duration}") | |
# Transcribe audio | |
options = dict(language=selected_source_lang, beam_size=3, best_of=3) | |
transcribe_options = dict(task="transcribe", **options) | |
result = model.transcribe(file, **transcribe_options) | |
segments = result["segments"] | |
print("whisper done with transcription") | |
except Exception as e: | |
raise RuntimeError("Error converting audio file") | |
try: | |
# Create embedding | |
def segment_embedding(segment): | |
audio = Audio() | |
start = segment["start"] | |
# Whisper overshoots the end timestamp in the last segment | |
end = min(duration, segment["end"]) | |
clip = Segment(start, end) | |
waveform, sample_rate = audio.crop(file, clip) | |
return embedding_model(waveform[None]) | |
embeddings = np.zeros(shape=(len(segments), 192)) | |
for i, segment in enumerate(segments): | |
embeddings[i] = segment_embedding(segment) | |
embeddings = np.nan_to_num(embeddings) | |
print(f'Embedding shape: {embeddings.shape}') | |
# Assign speaker label | |
if num_speakers == 1: | |
for i in range(len(segments)): | |
segments[i]["speaker"] = 'SPEAKER 1' | |
else: | |
clustering = AgglomerativeClustering(num_speakers).fit(embeddings) | |
labels = clustering.labels_ | |
for i in range(len(segments)): | |
segments[i]["speaker"] = 'SPEAKER ' + str(labels[i] + 1) | |
# Make output | |
objects = { | |
'Start' : [], | |
'End': [], | |
'Speaker': [], | |
'Text': [] | |
} | |
text = '' | |
if num_speakers == 1: | |
objects['Start'].append(str(convert_time(segment["start"]))) | |
objects['Speaker'].append(segment["speaker"]) | |
for (i, segment) in enumerate(segments): | |
text += segment["text"] + ' ' | |
objects['Text'].append(text) | |
objects['End'].append(str(convert_time(segment["end"]))) | |
else: | |
for (i, segment) in enumerate(segments): | |
if i == 0 or segments[i - 1]["speaker"] != segment["speaker"]: | |
objects['Start'].append(str(convert_time(segment["start"]))) | |
objects['Speaker'].append(segment["speaker"]) | |
if i != 0: | |
objects['End'].append(str(convert_time(segments[i - 1]["end"]))) | |
objects['Text'].append(text) | |
text = '' | |
text += segment["text"] + ' ' | |
objects['End'].append(str(convert_time(segments[i - 1]["end"]))) | |
objects['Text'].append(text) | |
time_end = time.time() | |
time_diff = time_end - time_start | |
memory = psutil.virtual_memory() | |
gpu_utilization, gpu_memory = GPUInfo.gpu_usage() | |
gpu_utilization = gpu_utilization[0] if len(gpu_utilization) > 0 else 0 | |
gpu_memory = gpu_memory[0] if len(gpu_memory) > 0 else 0 | |
system_info = f""" | |
*Memory: {memory.total / (1024 * 1024 * 1024):.2f}GB, used: {memory.percent}%, available: {memory.available / (1024 * 1024 * 1024):.2f}GB.* | |
*Processing time: {time_diff:.5} seconds.* | |
*GPU Utilization: {gpu_utilization}%, GPU Memory: {gpu_memory}MiB.* | |
""" | |
return pd.DataFrame(objects), system_info | |
except Exception as e: | |
raise RuntimeError("Error Running inference with local model", e) | |
# ---- Youtube Conversion ---- | |
def get_youtube(video_url): | |
yt = YouTube(video_url) | |
abs_video_path = yt.streams.filter(progressive=True, file_extension='mp4').order_by('resolution').desc().first().download() | |
print("Success download video") | |
print(abs_video_path) | |
return abs_video_path | |
def yt_to_text(video_file_path, selected_source_lang, whisper_model, num_speakers): | |
""" | |
# Transcribe youtube link using OpenAI Whisper | |
1. Using Open AI's Whisper model to seperate audio into segments and generate transcripts. | |
2. Generating speaker embeddings for each segments. | |
3. Applying agglomerative clustering on the embeddings to identify the speaker for each segment. | |
Speech Recognition is based on models from OpenAI Whisper https://github.com/openai/whisper | |
Speaker diarization model and pipeline from by https://github.com/pyannote/pyannote-audio | |
""" | |
model = whisper.load_model(whisper_model) | |
time_start = time.time() | |
if(video_file_path == None): | |
raise ValueError("Error no video input") | |
print(video_file_path) | |
try: | |
# Read and convert youtube video | |
_,file_ending = os.path.splitext(f'{video_file_path}') | |
print(f'file ending is {file_ending}') | |
audio_file = video_file_path.replace(file_ending, ".wav") | |
print("starting conversion to wav") | |
os.system(f'ffmpeg -i "{video_file_path}" -ar 16000 -ac 1 -c:a pcm_s16le "{audio_file}"') | |
# Get duration | |
with contextlib.closing(wave.open(audio_file,'r')) as f: | |
frames = f.getnframes() | |
rate = f.getframerate() | |
duration = frames / float(rate) | |
print(f"conversion to wav ready, duration of audio file: {duration}") | |
# Transcribe audio | |
options = dict(language=selected_source_lang, beam_size=5, best_of=5) | |
transcribe_options = dict(task="transcribe", **options) | |
result = model.transcribe(audio_file, **transcribe_options) | |
segments = result["segments"] | |
print("starting whisper done with whisper") | |
except Exception as e: | |
raise RuntimeError("Error converting video to audio") | |
try: | |
# Create embedding | |
def segment_embedding(segment): | |
audio = Audio() | |
start = segment["start"] | |
# Whisper overshoots the end timestamp in the last segment | |
end = min(duration, segment["end"]) | |
clip = Segment(start, end) | |
waveform, sample_rate = audio.crop(audio_file, clip) | |
return embedding_model(waveform[None]) | |
embeddings = np.zeros(shape=(len(segments), 192)) | |
for i, segment in enumerate(segments): | |
embeddings[i] = segment_embedding(segment) | |
embeddings = np.nan_to_num(embeddings) | |
print(f'Embedding shape: {embeddings.shape}') | |
# Assign speaker label | |
if num_speakers == 1: | |
for i in range(len(segments)): | |
segments[i]["speaker"] = 'SPEAKER 1' | |
else: | |
clustering = AgglomerativeClustering(num_speakers).fit(embeddings) | |
labels = clustering.labels_ | |
for i in range(len(segments)): | |
segments[i]["speaker"] = 'SPEAKER ' + str(labels[i] + 1) | |
# Make output | |
objects = { | |
'Start' : [], | |
'End': [], | |
'Speaker': [], | |
'Text': [] | |
} | |
text = '' | |
if num_speakers == 1: | |
objects['Start'].append(str(convert_time(segment["start"]))) | |
objects['Speaker'].append(segment["speaker"]) | |
for (i, segment) in enumerate(segments): | |
text += segment["text"] + ' ' | |
objects['Text'].append(text) | |
objects['End'].append(str(convert_time(segment["end"]))) | |
else: | |
for (i, segment) in enumerate(segments): | |
if i == 0 or segments[i - 1]["speaker"] != segment["speaker"]: | |
objects['Start'].append(str(convert_time(segment["start"]))) | |
objects['Speaker'].append(segment["speaker"]) | |
if i != 0: | |
objects['End'].append(str(convert_time(segments[i - 1]["end"]))) | |
objects['Text'].append(text) | |
text = '' | |
text += segment["text"] + ' ' | |
objects['End'].append(str(convert_time(segments[i - 1]["end"]))) | |
objects['Text'].append(text) | |
time_end = time.time() | |
time_diff = time_end - time_start | |
memory = psutil.virtual_memory() | |
gpu_utilization, gpu_memory = GPUInfo.gpu_usage() | |
gpu_utilization = gpu_utilization[0] if len(gpu_utilization) > 0 else 0 | |
gpu_memory = gpu_memory[0] if len(gpu_memory) > 0 else 0 | |
system_info = f""" | |
*Memory: {memory.total / (1024 * 1024 * 1024):.2f}GB, used: {memory.percent}%, available: {memory.available / (1024 * 1024 * 1024):.2f}GB.* | |
*Processing time: {time_diff:.5} seconds.* | |
*GPU Utilization: {gpu_utilization}%, GPU Memory: {gpu_memory}MiB.* | |
""" | |
return pd.DataFrame(objects), system_info | |
except Exception as e: | |
raise RuntimeError("Error Running inference with local model", e) | |
def download_csv(dataframe: pd.DataFrame): | |
compression_options = dict(method='zip', archive_name='output.csv') | |
dataframe.to_csv('output.zip', index=False, compression=compression_options) | |
return 'output.zip' | |
# ---- Gradio Layout ---- | |
# Inspiration from https://huggingface.co./spaces/vumichien/whisper-speaker-diarization | |
# -- General Functions -- | |
df_init = pd.DataFrame(columns=['Start', 'End', 'Speaker', 'Text']) | |
memory = psutil.virtual_memory() | |
title = "Whisper speaker diarization & speech recognition" | |
interface = gr.Blocks(title=title) | |
interface.encrypt = False | |
# -- Functions Audio Input -- | |
microphone_in = gr.inputs.Audio(source="microphone", | |
type="filepath", | |
optional=True) | |
upload_in = gr.inputs.Audio(source="upload", | |
type="filepath", | |
optional=True) | |
selected_source_lang_audio = gr.Dropdown(choices=source_language_list, | |
type="value", | |
value="en", | |
label="Spoken language in audio", | |
interactive=True) | |
selected_whisper_model_audio = gr.Dropdown(choices=whisper_models, | |
type="value", | |
value="base", | |
label="Selected Whisper model", | |
interactive=True) | |
number_speakers_audio = gr.Number(precision=0, | |
value=2, | |
label="Selected number of speakers", | |
interactive=True) | |
system_info_audio = gr.Markdown(f"*Memory: {memory.total / (1024 * 1024 * 1024):.2f}GB, used: {memory.percent}%, available: {memory.available / (1024 * 1024 * 1024):.2f}GB*") | |
transcription_df_audio = gr.DataFrame(value=df_init, | |
label="Transcription dataframe", | |
row_count=(0, "dynamic"), | |
max_rows = 10, | |
wrap=True, | |
overflow_row_behaviour='paginate') | |
csv_download_audio = gr.outputs.File(label="Download CSV") | |
# -- Functions Video Input -- | |
video_in = gr.Video(label="Video file", | |
mirror_webcam=False) | |
youtube_url_in = gr.Textbox(label="Youtube url", | |
lines=1, | |
interactive=True) | |
selected_source_lang_yt = gr.Dropdown(choices=source_language_list, | |
type="value", | |
value="en", | |
label="Spoken language in audio", | |
interactive=True) | |
selected_whisper_model_yt = gr.Dropdown(choices=whisper_models, | |
type="value", | |
value="base", | |
label="Selected Whisper model", | |
interactive=True) | |
number_speakers_yt = gr.Number(precision=0, | |
value=2, | |
label="Selected number of speakers", | |
interactive=True) | |
system_info_yt = gr.Markdown(f"*Memory: {memory.total / (1024 * 1024 * 1024):.2f}GB, used: {memory.percent}%, available: {memory.available / (1024 * 1024 * 1024):.2f}GB*") | |
transcription_df_yt = gr.DataFrame(value=df_init, | |
label="Transcription dataframe", | |
row_count=(0, "dynamic"), | |
max_rows = 10, | |
wrap=True, | |
overflow_row_behaviour='paginate') | |
csv_download_yt = gr.outputs.File(label="Download CSV") | |
with interface: | |
with gr.Tab("Whisper speaker diarization & speech recognition"): | |
gr.Markdown(''' | |
<div> | |
<h1 style='text-align: center'>Whisper speaker diarization & speech recognition</h1> | |
This space uses Whisper models from <a href='https://github.com/openai/whisper' target='_blank'><b>OpenAI</b></a> to recoginze the speech and ECAPA-TDNN model from <a href='https://github.com/speechbrain/speechbrain' target='_blank'><b>SpeechBrain</b></a> to encode and clasify speakers</h2> | |
</div> | |
''') | |
with gr.Row(): | |
gr.Markdown(''' | |
### Transcribe youtube link using OpenAI Whisper | |
##### 1. Using Open AI's Whisper model to seperate audio into segments and generate transcripts. | |
##### 2. Generating speaker embeddings for each segments. | |
##### 3. Applying agglomerative clustering on the embeddings to identify the speaker for each segment. | |
''') | |
with gr.Row(): | |
with gr.Column(): | |
microphone_in.render() | |
upload_in.render() | |
with gr.Column(): | |
gr.Markdown(''' | |
##### Here you can start the transcription process. | |
##### Please select the source language for transcription. | |
##### You should select a number of speakers for getting better results. | |
''') | |
selected_source_lang_audio.render() | |
selected_whisper_model_audio.render() | |
number_speakers_audio.render() | |
transcribe_btn = gr.Button("Transcribe audio and initiate diarization") | |
transcribe_btn.click(speech_to_text, | |
[ | |
microphone_in, | |
upload_in, | |
selected_source_lang_audio, | |
selected_whisper_model_audio, | |
number_speakers_audio | |
], | |
[ | |
transcription_df_audio, | |
system_info_audio | |
]) | |
with gr.Row(): | |
gr.Markdown(''' | |
##### Here you will get transcription output | |
##### ''') | |
with gr.Row(): | |
with gr.Column(): | |
transcription_df_audio.render() | |
system_info_audio.render() | |
with gr.Row(): | |
with gr.Column(): | |
download_btn = gr.Button("Download transcription dataframe") | |
download_btn.click(download_csv, transcription_df_audio, csv_download_audio) | |
csv_download_audio.render() | |
with gr.Row(): | |
gr.Markdown('''Chair of Data Science and Natural Language Processing - University of St. Gallen''') | |
with gr.Tab("Youtube Speech to Text"): | |
with gr.Row(): | |
gr.Markdown(''' | |
<div> | |
<h1 style='text-align: center'>Youtube Speech Recognition & Speaker Diarization</h1> | |
</div> | |
''') | |
with gr.Row(): | |
gr.Markdown(''' | |
### Transcribe Youtube link | |
#### Test with the following examples: | |
''') | |
examples = gr.Examples(examples = | |
[ | |
"https://www.youtube.com/watch?v=vnc-Q8V4ihQ", | |
"https://www.youtube.com/watch?v=_B60aTHCE5E", | |
"https://www.youtube.com/watch?v=4BdKZxD-ziA", | |
"https://www.youtube.com/watch?v=4ezBjAW26Js", | |
], | |
label="Examples UNISG", | |
inputs=[youtube_url_in]) | |
with gr.Row(): | |
with gr.Column(): | |
youtube_url_in.render() | |
download_youtube_btn = gr.Button("Download Youtube video") | |
download_youtube_btn.click(get_youtube, [youtube_url_in], [video_in]) | |
print(video_in) | |
with gr.Row(): | |
with gr.Column(): | |
video_in.render() | |
with gr.Column(): | |
gr.Markdown(''' | |
#### Start the transcription process. | |
#### To initiate, please select the source language for transcription. | |
#### For better performance select the number of speakers. | |
''') | |
selected_source_lang_yt.render() | |
selected_whisper_model_yt.render() | |
number_speakers_yt.render() | |
transcribe_btn = gr.Button("Transcribe audio and initiate diarization") | |
transcribe_btn.click(yt_to_text, | |
[ | |
video_in, | |
selected_source_lang_yt, | |
selected_whisper_model_yt, | |
number_speakers_yt | |
], | |
[ | |
transcription_df_yt, | |
system_info_yt | |
]) | |
with gr.Row(): | |
gr.Markdown(''' | |
#### Here you will get transcription output | |
#### ''') | |
with gr.Row(): | |
with gr.Column(): | |
transcription_df_yt.render() | |
system_info_yt.render() | |
with gr.Row(): | |
with gr.Column(): | |
download_btn = gr.Button("Download transcription dataframe") | |
download_btn.click(download_csv, transcription_df_audio, csv_download_yt) | |
csv_download_yt.render() | |
with gr.Row(): | |
gr.Markdown('''Chair of Data Science and Natural Language Processing - University of St. Gallen''') | |
def main(): | |
interface.launch() | |
if __name__ == "__main__": | |
main() | |