import os import spaces import base64 from io import BytesIO import gradio as gr import torch from pdf2image import convert_from_path from PIL import Image from torch.utils.data import DataLoader from tqdm import tqdm from colpali_engine.models import ColQwen2, ColQwen2Processor model = ColQwen2.from_pretrained( "vidore/colqwen2-v1.0", torch_dtype=torch.bfloat16, device_map="cuda:0", # or "mps" if on Apple Silicon # attn_implementation="flash_attention_2" ).eval() processor = ColQwen2Processor.from_pretrained("vidore/colqwen2-v1.0") def encode_image_to_base64(image): """Encodes a PIL image to a base64 string.""" buffered = BytesIO() image.save(buffered, format="JPEG") return base64.b64encode(buffered.getvalue()).decode("utf-8") def query_gpt4o_mini(query, images, api_key): """Calls OpenAI's GPT-4o-mini with the query and image data.""" if api_key and api_key.startswith("sk"): try: from openai import OpenAI base64_images = [encode_image_to_base64(image[0]) for image in images] client = OpenAI(api_key=api_key.strip()) PROMPT = """ You are a smart assistant designed to answer questions about a PDF document. You are given relevant information in the form of PDF pages. Use them to construct a short response to the question, and cite your sources (page numbers, etc). If it is not possible to answer using the provided pages, do not attempt to provide an answer and simply say the answer is not present within the documents. Give detailed and extensive answers, only containing info in the pages you are given. You can answer using information contained in plots and figures if necessary. Answer in the same language as the query. Query: {query} PDF pages: """ response = client.chat.completions.create( model="gpt-4o-mini", messages=[ { "role": "user", "content": [ { "type": "text", "text": PROMPT.format(query=query) }] + [{ "type": "image_url", "image_url": { "url": f"data:image/jpeg;base64,{im}" }, } for im in base64_images] } ], max_tokens=500, ) return response.choices[0].message.content except Exception as e: return "OpenAI API connection failure. Verify the provided key is correct (sk-***)." return "Enter your OpenAI API key to get a custom response" def search(query: str, ds, images, k, api_key): k = min(k, len(ds)) device = "cuda:0" if torch.cuda.is_available() else "cpu" if device != model.device: model.to(device) qs = [] with torch.no_grad(): batch_query = processor.process_queries([query]).to(model.device) embeddings_query = model(**batch_query) qs.extend(list(torch.unbind(embeddings_query.to("cpu")))) scores = processor.score(qs, ds, device=device) top_k_indices = scores[0].topk(k).indices.tolist() results = [] for idx in top_k_indices: results.append((images[idx], f"Page {idx}")) # Generate response from GPT-4o-mini ai_response = query_gpt4o_mini(query, results, api_key) return results, ai_response def index(files, ds): print("Converting files") images = convert_files(files) print(f"Files converted with {len(images)} images.") return index_gpu(images, ds) def convert_files(files): images = [] for f in files: images.extend(convert_from_path(f, thread_count=4)) if len(images) >= 500: raise gr.Error("The number of images in the dataset should be less than 500.") return images @spaces.GPU def index_gpu(images, ds): """Example script to run inference with ColPali (ColQwen2)""" device = "cuda:0" if torch.cuda.is_available() else "cpu" if device != model.device: model.to(device) # run inference - docs dataloader = DataLoader( images, batch_size=4, shuffle=False, collate_fn=lambda x: processor.process_images(x).to(model.device), ) for batch_doc in tqdm(dataloader): with torch.no_grad(): batch_doc = {k: v.to(device) for k, v in batch_doc.items()} embeddings_doc = model(**batch_doc) ds.extend(list(torch.unbind(embeddings_doc.to("cpu")))) return f"Uploaded and converted {len(images)} pages", ds, images with gr.Blocks(theme=gr.themes.Soft()) as demo: gr.Markdown("# ColPali: Efficient Document Retrieval with Vision Language Models (ColQwen2) 📚") gr.Markdown("""Demo to test ColQwen2 (ColPali) on PDF documents. ColPali is model implemented from the [ColPali paper](https://arxiv.org/abs/2407.01449). This demo allows you to upload PDF files and search for the most relevant pages based on your query. Refresh the page if you change documents ! ⚠️ This demo uses a model trained exclusively on A4 PDFs in portrait mode, containing english text. Performance is expected to drop for other page formats and languages. Other models will be released with better robustness towards different languages and document formats ! """) with gr.Row(): with gr.Column(scale=2): gr.Markdown("## 1️⃣ Upload PDFs") file = gr.File(file_types=["pdf"], file_count="multiple", label="Upload PDFs") convert_button = gr.Button("🔄 Index documents") message = gr.Textbox("Files not yet uploaded", label="Status") api_key = gr.Textbox(placeholder="Enter your OpenAI KEY here (optional)", label="API key") embeds = gr.State(value=[]) imgs = gr.State(value=[]) with gr.Column(scale=3): gr.Markdown("## 2️⃣ Search") query = gr.Textbox(placeholder="Enter your query here", label="Query") k = gr.Slider(minimum=1, maximum=10, step=1, label="Number of results", value=5) # Define the actions search_button = gr.Button("🔍 Search", variant="primary") output_gallery = gr.Gallery(label="Retrieved Documents", height=600, show_label=True) output_text = gr.Textbox(label="AI Response", placeholder="Generated response based on retrieved documents") convert_button.click(index, inputs=[file, embeds], outputs=[message, embeds, imgs]) search_button.click(search, inputs=[query, embeds, imgs, k, api_key], outputs=[output_gallery, output_text]) if __name__ == "__main__": demo.queue(max_size=5).launch(debug=True)