import gradio as gr from transformers import AutoModelForCausalLM, AutoTokenizer # Load the model and tokenizer model_name = "microsoft/DialoGPT-medium" model = AutoModelForCausalLM.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) # Define the function to generate responses def respond_to_input(user_input): inputs = tokenizer.encode(user_input + tokenizer.eos_token, return_tensors='pt') reply_ids = model.generate(inputs, max_length=1000, pad_token_id=tokenizer.eos_token_id) reply = tokenizer.decode(reply_ids[:, inputs.shape[-1]:][0], skip_special_tokens=True) return reply # Create the Gradio interface iface = gr.Interface(fn=respond_to_input, inputs="text", outputs="text") # Launch the app iface.launch()