File size: 11,012 Bytes
ed15883
98caf15
f0d9ee1
 
a78f82b
ed15883
f92bafd
ed15883
98caf15
f92bafd
ed15883
c7f8eb7
9a6a74b
98caf15
 
ed15883
5def575
98caf15
ed15883
5def575
98caf15
92238be
ed15883
 
 
 
 
 
 
 
 
 
 
 
9a6a74b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ed15883
9a6a74b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
98caf15
9a6a74b
 
 
 
 
 
98caf15
9a6a74b
98caf15
9a6a74b
 
 
 
 
 
 
98caf15
9a6a74b
 
98caf15
9a6a74b
98caf15
9a6a74b
 
 
98caf15
9a6a74b
 
98caf15
9a6a74b
 
 
 
f92bafd
9a6a74b
 
 
 
 
 
 
 
f92bafd
9a6a74b
 
 
 
 
 
 
98caf15
9a6a74b
98caf15
9a6a74b
 
f0d9ee1
9a6a74b
 
98caf15
9a6a74b
 
 
98caf15
9a6a74b
98caf15
9a6a74b
 
 
f92bafd
9a6a74b
98caf15
9a6a74b
 
98caf15
9a6a74b
 
 
 
 
 
98caf15
9a6a74b
 
 
 
 
 
98caf15
9a6a74b
 
 
 
 
 
 
 
 
 
 
5def575
9a6a74b
 
 
 
 
 
f92bafd
9a6a74b
 
 
f92bafd
9a6a74b
 
 
 
f92bafd
9a6a74b
 
6923641
9a6a74b
 
f92bafd
9a6a74b
 
 
 
 
 
f92bafd
9a6a74b
98caf15
9a6a74b
 
98caf15
9a6a74b
 
 
 
 
 
 
98caf15
9a6a74b
98caf15
9a6a74b
 
98caf15
9a6a74b
 
98caf15
9a6a74b
 
 
 
f92bafd
9a6a74b
98caf15
 
9a6a74b
98caf15
 
9a6a74b
ed15883
9a6a74b
98caf15
 
 
 
f0d9ee1
 
9a6a74b
 
 
f0d9ee1
ed15883
f0d9ee1
 
9a6a74b
ed15883
 
 
 
 
 
9a6a74b
ed15883
9a6a74b
ed15883
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
# routers/find_related.py

import os
import pickle
import torch
import re

from typing import List
from datetime import datetime, timedelta
from enum import Enum
from sentence_transformers import util
from fastapi import APIRouter
from fastapi.responses import PlainTextResponse

try:
    from .embedding import EMBEDDING_CTX
    from .utils_gitea import gitea_fetch_issues, gitea_json_issue_get, gitea_issues_body_updated_at_get
except:
    from embedding import EMBEDDING_CTX
    from utils_gitea import gitea_fetch_issues, gitea_json_issue_get, gitea_issues_body_updated_at_get


router = APIRouter()

issue_attr_filter = {'number', 'title', 'body',
                     'state', 'updated_at', 'created_at'}


class State(str, Enum):
    opened = "opened"
    closed = "closed"
    all = "all"


class _Data(dict):
    cache_path = "routers/embedding/embeddings_issues.pkl"

    @staticmethod
    def _create_issue_string(title, body):
        cleaned_body = body.replace('\r', '')
        cleaned_body = cleaned_body.replace('**System Information**\n', '')
        cleaned_body = cleaned_body.replace('**Blender Version**\n', '')
        cleaned_body = cleaned_body.replace(
            'Worked: (newest version of Blender that worked as expected)\n', '')
        cleaned_body = cleaned_body.replace(
            '**Short description of error**\n', '')
        cleaned_body = cleaned_body.replace('**Addon Information**\n', '')
        cleaned_body = cleaned_body.replace(
            '**Exact steps for others to reproduce the error**\n', '')
        cleaned_body = cleaned_body.replace(
            '[Please describe the exact steps needed to reproduce the issue]\n', '')
        cleaned_body = cleaned_body.replace(
            '[Please fill out a short description of the error here]\n', '')
        cleaned_body = cleaned_body.replace(
            '[Based on the default startup or an attached .blend file (as simple as possible)]\n', '')
        cleaned_body = re.sub(
            r', branch: .+?, commit date: \d{4}-\d{2}-\d{2} \d{2}:\d{2}, hash: `.+?`', '', cleaned_body)
        cleaned_body = re.sub(
            r'\/?attachments\/[a-zA-Z0-9\-]+', 'attachment', cleaned_body)
        cleaned_body = re.sub(
            r'https?:\/\/[^\s/]+(?:\/[^\s/]+)*\/([^\s/]+)', lambda match: match.group(1), cleaned_body)

        return title + '\n' + cleaned_body

    @staticmethod
    def _find_latest_date(issues, default_str=None):
        # Handle the case where 'issues' is empty
        if not issues:
            return default_str

        return max((issue['updated_at'] for issue in issues), default=default_str)

    @classmethod
    def _create_strings_to_embbed(cls, issues):
        texts_to_embed = [cls._create_issue_string(
            issue['title'], issue['body']) for issue in issues]

        return texts_to_embed

    def _data_ensure_size(self, repo, size_new):
        ARRAY_CHUNK_SIZE = 4096

        updated_at_old = None
        arrays_size_old = 0
        titles_old = []
        try:
            arrays_size_old = self[repo]['arrays_size']
            if size_new <= arrays_size_old:
                return
        except:
            pass

        arrays_size_new = ARRAY_CHUNK_SIZE * \
            (int(size_new / ARRAY_CHUNK_SIZE) + 1)

        data_new = {
            'updated_at': updated_at_old,
            'arrays_size': arrays_size_new,
            'titles': titles_old + [None] * (arrays_size_new - arrays_size_old),
            'embeddings': torch.empty((arrays_size_new, *EMBEDDING_CTX.embedding_shape),
                                      dtype=EMBEDDING_CTX.embedding_dtype,
                                      device=EMBEDDING_CTX.embedding_device),
            'opened':  torch.zeros(arrays_size_new, dtype=torch.bool),
            'closed':  torch.zeros(arrays_size_new, dtype=torch.bool),
        }

        try:
            data_new['embeddings'][:arrays_size_old] = self[repo]['embeddings']
            data_new['opened'][:arrays_size_old] = self[repo]['opened']
            data_new['closed'][:arrays_size_old] = self[repo]['closed']
        except:
            pass

        self[repo] = data_new

    def _embeddings_generate(self, repo):
        if os.path.exists(self.cache_path):
            with open(self.cache_path, 'rb') as file:
                data = pickle.load(file)
                self.update(data)
                if repo in self:
                    return

        issues = gitea_fetch_issues('blender', repo, state='all', since=None,
                                    issue_attr_filter=issue_attr_filter)

        # issues = sorted(issues, key=lambda issue: int(issue['number']))

        print("Embedding Issues...")
        texts_to_embed = self._create_strings_to_embbed(issues)
        embeddings = EMBEDDING_CTX.encode(texts_to_embed)

        self._data_ensure_size(repo, int(issues[0]['number']))
        self[repo]['updated_at'] = self._find_latest_date(issues)

        titles = self[repo]['titles']
        embeddings_new = self[repo]['embeddings']
        opened = self[repo]['opened']
        closed = self[repo]['closed']

        for i, issue in enumerate(issues):
            number = int(issue['number'])
            titles[number] = issue['title']
            embeddings_new[number] = embeddings[i]
            if issue['state'] == 'open':
                opened[number] = True
            if issue['state'] == 'closed':
                closed[number] = True

    def _embeddings_updated_get(self, repo):
        with EMBEDDING_CTX.lock:
            try:
                data_repo = self[repo]
            except:
                self._embeddings_generate(repo)
                data_repo = self[repo]

            date_old = data_repo['updated_at']

            issues = gitea_fetch_issues(
                'blender', repo, since=date_old, issue_attr_filter=issue_attr_filter)

            # Get the most recent date
            date_new = self._find_latest_date(issues, date_old)

            if date_new == date_old:
                # Nothing changed
                return data_repo

            data_repo['updated_at'] = date_new

    # autopep8: off
            # Consider that if the time hasn't changed, it's the same issue.
            issues = [issue for issue in issues if issue['updated_at'] != date_old]

            self._data_ensure_size(repo, int(issues[0]['number']))

            updated_at = gitea_issues_body_updated_at_get(issues)
            issues_to_embed = []

            for i, issue in enumerate(issues):
                number = int(issue['number'])
                if issue['state'] == 'open':
                    data_repo['opened'][number] = True
                if issue['state'] == 'closed':
                    data_repo['closed'][number] = True

                title_old = data_repo['titles'][number]
                if title_old != issue['title']:
                    data_repo['titles'][number] = issue['title']
                    issues_to_embed.append(issue)
                elif updated_at[i] >= date_old:
                    issues_to_embed.append(issue)

            if issues_to_embed:
                print(f"Embedding {len(issues_to_embed)} issue{'s' if len(issues_to_embed) > 1 else ''}")
                texts_to_embed = self._create_strings_to_embbed(issues_to_embed)
                embeddings = EMBEDDING_CTX.encode(texts_to_embed)

                for i, issue in enumerate(issues_to_embed):
                    number = int(issue['number'])
                    data_repo['embeddings'][number] = embeddings[i]

    # autopep8: on
        return data_repo

    def _sort_similarity(self,
                         repo: str,
                         query_emb: List[torch.Tensor],
                         limit: int,
                         state: State = State.opened) -> list:
        duplicates = []

        data = self[repo]
        embeddings = data['embeddings']
        mask_opened = data["opened"]

        if state == State.all:
            mask = mask_opened | data["closed"]
        else:
            mask = data[state.value]

        embeddings = embeddings[mask]
        true_indices = mask.nonzero(as_tuple=True)[0]

        ret = util.semantic_search(
            query_emb, embeddings, top_k=limit, score_function=util.dot_score)

        for score in ret[0]:
            corpus_id = score['corpus_id']
            number = true_indices[corpus_id].item()
            closed_char = "" if mask_opened[number] else "~~"
            text = f"{closed_char}#{number}{closed_char}: {data['titles'][number]}"
            duplicates.append(text)

        return duplicates

    def find_relatedness(self, repo: str, number: int, limit: int = 20, state: State = State.opened):
        data = self._embeddings_updated_get(repo)

        # Check if the embedding already exists.
        if data['titles'][number] is not None:
            new_embedding = data['embeddings'][number]
        else:
            gitea_issue = gitea_json_issue_get('blender', repo, number)
            text_to_embed = self._create_issue_string(
                gitea_issue['title'], gitea_issue['body'])

            new_embedding = EMBEDDING_CTX.encode([text_to_embed])

        duplicates = self._sort_similarity(
            repo, new_embedding, limit=limit, state=state)

        if not duplicates:
            return ''

        if match := re.search(r'(~~)?#(\d+)(~~)?:', duplicates[0]):
            number_cached = int(match.group(2))
            if number_cached == number:
                return '\n'.join(duplicates[1:])

        return '\n'.join(duplicates)


G_data = _Data()


@router.get("/find_related/{repo}/{number}", response_class=PlainTextResponse)
def find_related(repo: str = 'blender', number: int = 104399, limit: int = 15, state: State = State.opened) -> str:
    related = G_data.find_relatedness(repo, number, limit=limit, state=state)
    return related


if __name__ == "__main__":
    update_cache = True
    if update_cache:
        G_data._embeddings_updated_get('blender')
        G_data._embeddings_updated_get('blender-addons')
        with open(G_data.cache_path, "wb") as file:
            # Converting the embeddings to be CPU compatible, as the virtual machine in use currently only supports the CPU.
            for val in G_data.values():
                val['embeddings'] = val['embeddings'].to(torch.device('cpu'))

            pickle.dump(dict(G_data), file, protocol=pickle.HIGHEST_PROTOCOL)

    # Converting the embeddings to be GPU.
    for val in G_data.values():
        val['embeddings'] = val['embeddings'].to(torch.device('cuda'))

    # 'blender/blender/111434' must print #96153, #83604 and #79762
    related1 = G_data.find_relatedness(
        'blender', 111434, limit=20, state=State.all)
    related2 = G_data.find_relatedness('blender-addons', 104399, limit=20)

    print("These are the 20 most related issues:")
    print(related1)
    print()
    print("These are the 20 most related issues:")
    print(related2)