import gradio as gr from fastai.vision.all import load_learner, PILImage # Cargar el modelo utilizando load_learner learn = load_learner('model.pkl') labels = learn.dls.vocab def predict(img): img = PILImage.create(img) pred, pred_idx, probs = learn.predict(img) return {labels[i]: float(probs[i]) for i in range(len(labels))} # Crear la interfaz con título y descripción gr.Interface( fn=predict, inputs=gr.Image(), outputs=gr.Label(num_top_classes=3), title="Brain and fruits classifier", description="This model identifies between real brains, prunes and walnuts in images.").launch()