import streamlit as st from transformers import pipeline print ("Loading model....") #Title and Description st.title("programming language identification") st.write(""" ### Powered bu Hugging Face and Streamlit This app uses a pre-trained model from Hugging Face to identificate programming language. Enter a programming language to determine what language it is! """) #Initialize Hugging Face Language identification pipeline @st.cache_resource def load_model(): print("before load model") return pipeline("text-classification", model="huggingface/CodeBERTa-language-id") language_identificator = load_model() # Input Test from User user_input = st.text_area("Enter some code to analyze",) #Identificate language if st.button("Identificate Language"): print("button click") if user_input.strip(): result = language_identificator(user_input)[0] language = result['label'] score = result['score'] #Display the Result st.subheader("Language Identification Result") st.write(f"**Language:** {language}") st.write(f"**Score:** {score:.2f}") else: st.warning("Please enter some code to analyze!")