Spaces:
Sleeping
Sleeping
import streamlit as st | |
from transformers import pipeline | |
print ("Loading model....") | |
#Title and Description | |
st.title("programming language identification") | |
st.write(""" | |
### Powered bu Hugging Face and Streamlit | |
This app uses a pre-trained model from Hugging Face to identificate programming language. | |
Enter a programming language to determine what language it is! | |
""") | |
#Initialize Hugging Face Language identification pipeline | |
def load_model(): | |
print("before load model") | |
return pipeline("text-classification", model="huggingface/CodeBERTa-language-id") | |
language_identificator = load_model() | |
# Input Test from User | |
user_input = st.text_area("Enter some code to analyze",) | |
#Identificate language | |
if st.button("Identificate Language"): | |
print("button click") | |
if user_input.strip(): | |
result = language_identificator(user_input)[0] | |
language = result['label'] | |
score = result['score'] | |
#Display the Result | |
st.subheader("Language Identification Result") | |
st.write(f"**Language:** {language}") | |
st.write(f"**Score:** {score:.2f}") | |
else: | |
st.warning("Please enter some code to analyze!") |